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Abstract

Root lattices are efficient sampling lattices for reconstructing isotropic signals in arbitrary dimensions, due

to their highly symmetric structure. One root lattice, the Cartesian grid, is almost exclusively used since it

matches the coordinate grid; but it is less efficient than other root lattices. Box-splines, on the other hand,

generalize tensor-product B-splines by allowing non-Cartesian directions. They provide, in any number of

dimensions, higher-order reconstructions of fields, often of higher efficiency than tensored B-splines. But on

non-Cartesian lattices, such as the BCC (Body-Centered Cubic) or the FCC (Face-Centered Cubic) lattice,

only some box-splines and then only up to dimension three have been investigated.

This paper derives and completely characterizes efficient symmetric box-spline reconstruction filters on

all irreducible root lattices that exist in any number of dimensions n ≥ 2 (n ≥ 3 for Dn and D∗
n lattices).

In all cases, box-splines are constructed by convolution using the lattice directions, generalizing the known

constructions in two and three variables. For each box-spline, we document the basic properties for com-

putational use: the polynomial degree, the continuity, the linear independence of shifts on the lattice and

optimal quasi-interpolants for fast approximation of fields.

Keywords: Box-spline, Root lattice, Sampling lattice, Reconstruction filter, Multi-dimensional signal

processing, Approximation, Quasi-interpolation

1. Introduction

Given discrete samples on a sampling lattice, the task of signal processing is to reconstruct the original

signal by recovering its primal spectrum with a proper reconstruction filter, i.e. to approximate regularly

spaced data from a corresponding space of functions. In one variable there is only one type of uniform

sampling lattice and the filter alone determines the quality of the reconstruction. But in higher dimensions,

the choice of sampling lattice plays as important a role as the choice of filter. While the best sampling lattice

depends on the individual input signal, it is not practical to use a different sampling lattice for each input

signal and we usually cannot predict the signal. Therefore sampling lattices are chosen based on standard

Email addresses: minhokim@uos.ac.kr (Minho Kim), jorg@cise.ufl.edu (Jörg Peters)

Preprint submitted to Journal of Computational and Applied Mathematics December 5, 2010



assumptions: that the input signal is band-limited and its spectrum is isotropic. Under these assumptions,

the optimal sampling lattice is the one of lowest density so that the signal can be reconstructed without

aliasing by a canonical filter. This lattice is the dual of the solution to the densest sphere packing problem

on lattices [1]. Root lattices, i.e. lattices invariant under Euclidean reflection groups, are prominent among the

known densest sphere packing lattices. The self-dual Cartesian grid is a root lattice but has comparatively

low sampling efficiency since, as Figure 1 indicates, it has the least density of the root lattices.
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Figure 1. Density of root lattices up to dimension 10. The relative density of Zn compared to Dn for

n = 3, 4, 5, 6 decreases as 71%, 50%, 35%, 25%, respectively.

For example, the BCC root lattice can reduce the number of samples by 29% compared to a Cartesian

lattice without any loss of information [2]. Figure 1 shows that the savings increase in more than three

dimensions.

In dimensions two and three, specific root lattices have been exploited by efficient symmetric reconstruc-

tion filters: splines on the hexagonal lattice [3], the 7-direction trivariate box-spline on the Cartesian lattice

[4, 5], box-splines on the BCC lattice [6], and 6-direction trivariate box-spline on the FCC lattice [7, 8] (see

[9] for a broad literature review). But for higher dimensions, only the n-dimensional Cartesian lattice readily

offers efficient symmetric reconstruction filters in the form of tensor-product B-splines.

In this paper, we show that multivariate box-splines, a generalization of (univariate) uniform B-splines

to multiple variables, provide a natural match on other root lattices. As piecewise polynomials defined

by consecutive integer-directional convolutions, these box-splines can possess higher continuity and higher

approximation order for a given total polynomial degree, than tensor-product B-splines (see Table 1).

Overview. In this paper we derive families of symmetric box-splines in any number of dimensions for all

irreducible root lattices. Such constructions are facilitated by defining simple square generator matrices.

Specifically, we first derive a non-tensored family of filters on the Cartesian lattice (Section 3) and then
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lattice
approx. total degree

order box-spline B-spline

Zn 2n−2 + 2 2n−1 n(2n−2 + 1)

An n
n(n− 1)

2
n(n− 1)

A∗
n 2r r(n + 1)− n n(2r − 1)

Dn 2n− 2 n(n− 2) n(2n− 3)

D∗
n 2n−2 + 2 2n−1 n(2n−2 + 1)

Table 1. Approximation order and polynomial degree for symmetric box-splines on root lattices compared

to tensor-product B-splines for dimension n ≥ 2 for Zn, An and A∗
n and n ≥ 3 for Dn and D∗

n.

address the An lattice, its dual A∗
n and the Dn lattice and its dual D∗

n (see Table 2). We only leave out the

irreducible root lattices E6, E7, E8 and their duals since they are specific to dimensions 6,7 and 8, respectively.

For each box-spline, we document its polynomial degree, continuity, optimal approximation order and the

linear independence of shifts on the lattice; and we exhibit optimal quasi-interpolants, i.e. simple rules for

determining box-spline coefficients from data, that allow efficient construction of fields that approximate the

original field up to a given order (Section 2.3). Table 2 gives an overview of the lattices and Table 3 provides

a succinct summary of all results for lattice-and-box-spline-family pairs.

2. Background: Notation, Root Lattices and Box-Splines

2.1. Notation

Matrices, including the box-spline direction matrices (e.g., Ξ and Tr) and the lattice generator matrices

(e.g., G, A∗
P and A±

n ), are typeset in bold upper case; vectors are typeset in bold lower case, in (i) italic

if variable, e.g., x and j, and (ii) non-italic if constant, e.g., ejn and jn; lattices are typeset in calligraphic

upper case; e.g., An and Dn and root systems and finite reflection (Coxeter) groups are typeset as, e.g.,

An and Dn. The dimension of vectors and matrices is indicated by a subscript when not obvious from the

context. We note in particular, x(j), 1 ≤ j ≤ n, is the j-th element of the vector x ∈ Rn, ejn the j-th unit

vector in Rn, In the n× n identity matrix, 0n := [0 · · · 0]t the n-dimensional zero vector, jn := [1 · · · 1]t the
‘diagonal vector’, Jn := jnj

t
n the n × n matrix composed of 1’s only and Pn := In − Jn/n : Rn → Hn−1

j

is the orthogonal projection along jn onto the plane Hn−1
j where, with the dot product x · y := xty ∈ R,

Hn−1
j := {x ∈ Rn : x · jn = 0} is the (n − 1)-dimensional hyperplane embedded in Rn intersecting 0 with

normal jn. Following the convention in [11], an n ×m matrix will be interpreted as a collection of column

vectors or as a linear transformation from Rm to Rn. When interpreted as a set of column vectors, repeated

columns are considered different elements. Column vectors are used as either vectors or points depending on
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Figure 2. Unit ‘ball’ (primary spectrum and its replicas) packing with respect to the density δ for (top) the

hexagonal lattice and (bottom) the Cartesian lattice. (left) Sampling density is high enough so

that no pair of spectra overlap; (bottom center) the primary spectrum and its replicas touch on

the Cartesian lattice but (top center) are separated on the hexagonal lattice; (top right) the balls

only touch on the hexagonal lattice, and hence the original signal still can be reconstructed

without aliasing. (bottom right) On the Cartesian lattice the spectra overlap, causing aliasing.

the context. #A denotes the cardinality of the set A. A matrixU ∈ Zn×m is unimodular if detZ ∈ {−1, 1, 0}
for all square submatrices Z ⊆ U. If U ∈ Zn×n is unimodular and invertible then U−1 ∈ Zn×n.

2.2. Lattices and sampling

An n-dimensional lattice Ln embedded in Rl, l ≥ n is a discrete subgroup generated by a l× n generator

matrix G of rank(G) = n [12]:

Ln := {Gj ∈ Rl : j ∈ Zn}.

That is, all integer linear combinations GZn define (the points of) the n-dimensional lattice. Any n-

dimensional lattice Ln has a dual lattice given by

L∗
n :=

{
x ∈ Rl : x · u ∈ Z, ∀u ∈ Ln

}
.

Lattices obtained from one another by a rotation, reflection and change of uniform scale are said to be

equivalent, written ∼= [10]. Table 2 summarizes the root lattices relevant for this paper.

The density of a lattice packing is the proportion of the space occupied by the spheres when packed.

The center density of a lattice is the number of the lattice points per unit volume, which can be obtained by

dividing its density by the volume of the unit sphere [10]. Figure 2 illustrates how the sampling efficiency

differs according to packing density of the lattice: If the density of the dual lattice is sufficiently low, and
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Table 2. Domain lattices (see Section 2.1 for the notation) [10]

.

lattice generator matrix center density
root

symmetry order Coxeter diagram
system

Zn In 2−n Bn 2nn!

An A±
n := In +

(
−1±

√
n+ 1

)
Jn

n 2−n/2(n+ 1)−1/2 An (n+ 1)!2
e1n+1 − e2n+1 e2n+1 − e3n+1 en−1

n+1 − enn+1 enn+1 − en+1
n+1

A∗
n A∗±

n := In +
(
−1± 1√

n+1

)
Jn

n
nn/2

2n(n+ 1)(n−1)/2

Dn GDn
:=

[
In−1 −en−1

n

−jtn−1 −1

]
2−(n+2)/2

Cn




2nn! (n 6= 4)

1152 (n = 4)
e1n − e2n e2n − e3n

en−2
n − en−1

n

en−1
n − enn

en−1
n + enn

or Dn

D∗
n GD∗

n
:=

[
In−1 jn−1/2

0t
n−1 1/2

]



31.52−5 (n = 3)

2−(n−1) (n > 3)

accordingly the sampling density high as in the leftmost case, then the original signal can be reconstructed

without aliasing regardless of the sampling lattice; but, as can be seen from the rightmost case, when sampled

sparsely, aliasing, visible as overlap of the primary disk-shaped spectrum and its replicas, depends on the

sampling lattice. Therefore, larger (center) density implies that its dual is a more efficient sampling lattice.

Table 2 (middle column) shows the center density of the root lattices considered in our paper. When plotted

(see Figure 1), this reveals the Cartesian lattice Zn to have the poorest sampling efficiency among the

irreducible root lattices.

2.3. Box-Splines

We use the notation and definitions made standard by de Boor et al. [11]. (See also [13].) In particular,

a box-spline is a smooth piecewise polynomial of finite support and a spline in box-spline form is a linear

combination of the shifts of a box-spline. If the sequence of the shifts of a box-spline are linearly independent,

the box-spline is a basis function.

Definition. Geometrically, the value of a box-spline with direction matrix Ξ ∈ Rn×m at x ∈ ranΞ ⊂ Rn is

the shadow-density [11, (I.3)] (see, e.g., Figure 3 or Figure 6)

MΞ(x) := volm−rank(Ξ)

(
Ξ−1{x} ∩

)
/| detΞ|,

i.e., the normalized volume of the intersection of a half-open cube := [0..1)m ⊂ Rm, m ≥ n, with the

pre-image Ξ−1{x} := {y ∈ Rm : Ξy = x} of x under the n×m direction matrix Ξ possibly with repeated

columns. This is an (m − dim ranΞ)-dimensional affine subspace in Rm and vold(·) is the d-dimensional

volume of its argument. Alternatively, we can construct MΞ via consecutive directional convolutions along

5



bc

bc

bc

0 1 2 3
(a) (b)

Figure 3. Geometric definition of the box-spline with the direction matrix Ξ := [1 1 1]; area of intersection

of a cube with Ξ−1{x} = [1 1 1]
t
/3{x}+H2

j , the translates of the hyperplanes orthogonal to

j3 := [1 1 1]
t
.

the directions in Ξ as in Figure 4 [11, (I.8)]:

MΞ∪ζ =

∫ 1

0

MΞ(· − tζ)dt.

In the following, unless mentioned specifically, we assume rank(Ξ) = n, hence the subspace spanned by the

columns of Ξ, ranΞ = Rn.

Polynomial Degree, Continuity and Cardinal Spline Space. A box-spline MΞ is a piecewise polynomial on

ranΞ. Its polynomial degree is less than or equal to #Ξ− n. The polynomial pieces join to form a function

in Cm−1(ranΞ) where [11, page 9]

m := m(Ξ) := min{#Z : Z ∈ A(Ξ)} − 1 (1)

and [11, page 8] A(Ξ) := {Z ⊆ Ξ : Ξ\Z does not span Rn}. The cardinal spline space [11, (II.1)]

SΞ := span (MΞ(· − j))j∈Zn

is the spline space spanned by the shifts of MΞ on Zn. Each spline s ∈ SΞ has the form s :=
∑

j∈Zn MΞ(· −
j)a(j) with a mesh function (spline coefficients) a : Zn → R. The sequence (MΞ(· − j))j∈Zn is linearly

independent if and only if Ξ is unimodular [11, page 41].

Quasi-Interpolation. A quasi-interpolant for the spline space SΞ provides a fast way of approximating a

function f by a spline QMΞ
f ∈ SΞ. We focus on quasi-interpolants that provide the optimal approximation

order m(Ξ) + 1 by reproducing polynomial terms up to degree m(Ξ) [11, page 72]:

(QMΞ
f)(x) :=

∑

j∈Zn

MΞ(x− j)λMΞ
(f(·+ j)) . (2)

Here λMΞ
is the linear functional [11, (III.22)]

λMΞ
f :=

∑

|α|≤m(Ξ)

gα(0) (D
αf) (0) (3)

and α ∈ Zn
+ is a multi-index. The Appell sequence {gα} in (3) can be computed either recursively as



g0 = [[]]0

gα = [[]]
α −∑

β 6=α(µΞ[[]]
α−β

)gβ

where µΞf :=
∑

j

MΞ(j)f(−j), ([11, (III.19)])
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or from the Fourier transform M̂Ξ as gα(0) =
(
[[− iD]]α

(
1/M̂Ξ

))
(0). [11, (III.34)].

3. The Symmetric (n + 2n−1)-direction Box-Spline on the Cartesian Lattice

Tensor-product B-splines are the most popular reconstruction filters on the Cartesian lattice. Their sep-

arable tensor structure simplifies computations, and shifts on the Cartesian lattice are linearly independent.

But their continuity and approximation order are low for their total polynomial degree when compared to

other box-splines. For example, the bi-quadratic B-spline and the ZP-element (Section 3.2) are both C1 but

their total degrees are 4 and 2, respectively.

We can construct other box-splines with higher approximation order for a given degree, by leveraging

more directions of the Cartesian lattice. One way is to include the 2n−1 diagonal directions of the unit cube

in addition to its n main axis directions. In dimension two, this results in the well-known Zwart-Powell

element [14] (Table 3 and Figure 4) and in dimension three, it yields the 7-direction trivariate box-spline

MZ3 [4] (see Section 3.2).

3.1. Lattice, Definition and Properties

The root system Bn and the Cartesian lattice. The Cartesian lattice has been used as a sampling lattice for

a long time, since it naturally matches the Cartesian coordinates. As one of the root lattices generated by

the root system [15]

Bn := {±ein ± ejn : 1 ≤ i 6= j ≤ n} ∪
⋃

1≤j≤n

{ejn},

its symmetry group consists of all n! permutations and 2n sign changes of the coordinates. Hence the order

is 2nn! [10].

Box-spline MZn. Since the end points of the 2n diagonals, {v ∈ Rn : v(j) ∈ {±1}, 1 ≤ j ≤ n}, map to one

another under the operations of the symmetry group of Bn, we can add these 2n−1 non-parallel diagonal

directions and define the direction matrix

ΞZn := In ∪ {enn +

n−1∑

j=1

σje
j
n : σj ∈ {±1}}, n ≥ 2.

This yields the centered box-spline

MZn := M c
ΞZn

= MΞZn
(·+

∑

ξ∈ΞZn

ξ/2). (4)

The following lemma will be helpful to prove the properties of MZn .

Lemma 1 (Independent directions). For a nonzero vector v ∈ Rn, let Ξ⊥v := {ξ ∈ Ξ : ξ · v = 0, } be the

vectors in Ξ orthogonal to v. Then

max
v∈Rn

#Ξ⊥v
Zn = 2n−2 + n− 2.
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Proof. If we choose v∗ := enn + en−1
n then

Ξ⊥v∗

Zn = {enn − en−1
n +

n−2∑

j=1

±ejn} ∪ (In\{en−1
n , enn})

and therefore #Ξ⊥v∗

Zn = 2n−2 + n − 2. To show that 2n−2 + n − 2 is the upper bound, abbreviate Z :=

{enn +
∑n−1

j=1 σje
j
n : σj ∈ {±1}} so that ΞZn = Z ⊔ In. Since the last entry of every column is 1, #Z = 2n−1.

Let 0 6= v ∈ Rn be a vector with k nonzero entries. Since Z⊥v = ∅ for k = 1, we consider only k > 1. We

split

Z = Z0 ⊔ Z1, where Z0 := {ζ ∈ Z : ζ · v = 0} and Z1 := {ζ ∈ Z : ζ · v 6= 0}.

Let v(i) 6= 0, i < n and ζ0 and ζ1 two columns that differ only in the (sign of the) i-th entry. Then ζ0 ∈ Z0

implies ζ1 ∈ Z1. Therefore Z1 has at least as many elements as Z0 and #Z⊥v = #Z0 ≤ #Z/2 = 2n−2.

Since #I⊥v
n = n− k, we get

#Ξ⊥v
Zn = #Z⊥v +#I⊥v

n ≤ 2n−2 + n− k.

and the last expression is maximized when k = 2.

Theorem 1 (Properties of MZn). The box-spline MZn is (i) of total polynomial degree 2n−1, (ii) MZn ∈
C2n−2

and (iii) the sequence (MZn(· − j))j∈Zn, n ≥ 2, is linearly dependent.

Proof. (i) The box-spline’s degree follows from #ΞZn − n = n+ 2n−1 − n = 2n−1.

(ii) By Lemma 1, at most (2n−2 + n − 2) directions span a hyperplane. Therefore we have m(ΞZn) =

((n+ 2n−1)− (2n−2 + n− 2))− 1 = 2n−2 + 1 and the claim follows by the remark preceding (1).

(iii) For the matrix

Zn :=
n⋃

i=1



−

i−1∑

j=1

ejn +
n∑

j=i

ejn



 =




1 −1 ··· −1 −1
1 1 ··· −1 −1

...
...
. . .

...
...

1 1 ··· 1 −1
1 1 ··· 1 1


 =




1 0 ··· 0 0
1 1 ··· 0 0
...
...
. . .

...
...

1 1 ··· 1 0
1 1 ··· 1 1






1 −1 ··· −1 −1
0 2 ··· 0 0
...
...
. . .

...
...

0 0 ··· 2 0
0 0 ··· 0 2


 ⊂ ΞZn ,

detZn = 2n−1 /∈ {−1, 1, 0} for n ≥ 2, i.e. ΞZn is not unimodular and the claim follows.

3.2. Examples

ZP-Element. In dimension two, ΞZ2 is the direction matrix of the well-known ZP-element [14]:

ΞZP :=


 1 0 1 −1

0 1 1 1


 =: ΞZ2 .

Figure 4 shows the construction of the ZP-element via consecutive directional convolutions along the direc-

tions in ΞZP. Note that the ZP-element is not centered whereas MZ2 is centered by (4).
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x

y

(a)
[

1 0

0 1

]

x

y

(b)
[

1 0 1

0 1 1

]

x

y

(c)
[

1 0 1 −1

0 1 1 1

]

Figure 4. Construction of the ZP-element via directional convolutions.

The (total) degree of MZ2 is 22−1 = 2 and MZ2 ∈ C22−2

= C1. The BB(Bernstein-Bézier)-coefficients

(the BB-net) [16] of MZ2 can be found in [17]. Following the procedure laid out in [11, (III.22)], we derive the

quasi-interpolant QZ2 with optimal approximation order 3 for the spline space SZ2 := span (MZ2(· − j))j∈Z2

as

(QZ2f) (x) :=
∑

j∈Z2

MZ2(x− j)λZ2 (f(·+ j)) . (5)

An optimal choice of spline coefficients for data f is given by the functional

λZ2f := λM
Z2
f = (f − 1

8
(D2

1 +D2
2)f)(0) = (f − 1

24
(D2

1 +D2
2 + (D1 +D2)

2 + (−D1 +D2)
2)f)(0)

= (f − 1

24

∑

ξ∈ΞZP

D2
ξf)(0).

32 −1−1

−1

−1

−1

−1

−1

−1

−1

Figure 5. Quasi-interpolation

stencil of MZ2 (scaled by

24).

Note that this functional differs from the one in [11, III(23)] since

MZ2 is centered while the ZP-element is not. The technical report [18]

details the non-trivial but algorithmic derivation of λM
Z2
f and other

quasi-interpolant functionals in this paper according to [11, (III.19)].

For a discrete input f : Z2 → R, we can approximate the directional

derivatives by finite differences with 8 neighbors (see Figure 5 for the

stencil)

λZ2(f(·+ j)) ≈ 4

3
f(j)− 1

24

∑

ξ∈ΞZP

(f(j + ξ) + f(j − ξ)).

The 7-Direction Trivariate Box-Spline. In dimension three, ΞZ3 is the direction matrix of the 7-direction

trivariate box-spline [4, 5, 19, 20] MZ3:

ΞZ3 :=




1 0 0 1 −1 1 −1

0 1 0 1 1 −1 −1

0 0 1 1 1 1 1


 .

The (total) degree of MZ3 is 23−1 = 4 and MZ3 ∈ C23−2

= C2. The same continuity is achieved by the

tri-cubic B-spline of total degree 12− 3 = 9. Kim and Peters [20] derived the BB-net of MZ3.

9



A quasi-interpolant QZ3 (see (5)) with optimal approximation order 4 for the spline space SZ3 :=

span (MZ3(· − j))j∈Z3 is (cf. [18])

λZ3f :=(f − 5

24
(D2

1 +D2
2 +D2

3)f)(0) (6)

=(f − 1

24
(D2

1 +D2
2 +D2

3 + (D1 +D2 +D3)
2 + (−D1 +D2 +D3)

2

+ (D1 −D2 +D3)
2 + (−D1 −D2 +D3)

2))(0)

=(f − 1

24

∑

ξ∈Ξ
Z3

D2
ξf)(0).

For discrete data f : Z3 → R, we can approximate the directional derivatives by finite differences with 14

neighbors

λZ3 (f(·+ j)) ≈ 19

12
f(j)− 1

24

∑

ξ∈Ξ
Z3

f(j + ξ) + f(j − ξ), j ∈ Z3.

Alternatively, we can approximate (6) using 6 neighbors as

λZ3 (f(·+ j)) ≈ 9

4
f(j)− 5

24

3∑

i=1

(f(j + ein) + f(j − ein)), j ∈ Z3.

4. Box-splines on Non-Cartesian Lattices

We leverage that, given an invertible linear map L on Rn, [11, (I.23)]

MΞ = | detL|MLΞ ◦ L.

Hence, given a square generator matrix G, any weighted sum of the shifts of the (scaled) box-spline

M̃Ξ := | detG|MGΞ

on the possibly non-Cartesian lattice GZn can be expressed as a weighted sum of the shifts of MΞ on the

Cartesian lattice Zn by change of variables :

∑

j∈GZn

M̃Ξ(· − j)a(j) =
∑

k∈Zn

MΞ(G
−1 · −k)a(Gk) (7)

where a : GZn → R is a mesh function (the spline coefficients) on GZn. In the bivariate setting (7) was

used by de Boor and Höllig [21, page 650]. We denote the spline space spanned by the shifts of M̃Ξ on GZn

by

SG
Ξ := span

(
M̃Ξ(· − j)

)
j∈GZn

.

By omitting G = In, we define SΞ := SIn
Ξ .

By (7), the sequence
(
M̃Ξ(· − j)

)
j∈GZn

is linearly independent if and only if Ξ is unimodular. We will

leverage a general theorem on quasi-interpolation whose proof appeared in [9].
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Lemma 2 (Quasi-interpolation; [9]). Let α ∈ Zn
+ be a multi-index, Dj the directional derivative along ejn

and Dα
G :=

∏
v∈G Dαv

v (with αv denoting the entry of α corresponding to v) a composition of directional

derivatives Dv :=
∑n

j=1 v(j)Dj along the columns of G. Let further {gα} be the Appell sequence given in

[11, (III.19)] and define the linear functional (cf. [11, (III.22)])

λMΞ
f :=

∑

|α|≤m(Ξ)

gα(0) (D
αf) (0).

The quasi-interpolant QG
MΞ

for SG
Ξ defined by the functional

λG
MΞ

(f (·+ j)) := λMΞ

(
(f ◦G)

(
·+G−1j

))

=
∑

|α|≤m(Ξ)

gα(0) (D
α
Gf) (j) , j ∈ GZn,

provides the same maximal approximation order m(Ξ) + 1 (i.e. reproduces all Taylor terms up to degree

m(Ξ)) as does QMΞ
defined by λMΞ

for SΞ.

We can now investigate the major non-Cartesian root lattices and corresponding symmetric box-splines.

5. The Symmetric n(n + 1)/2-direction Box-Spline on the An Lattice

On the An lattice, we construct a symmetric box-spline1 M±
An

(15) by convolving in the directions of the

root system An (8). These are the directions to a lattice point’s n(n + 1) nearest lattice neighbors on the

An lattice (see Figure 8(b) for the trivariate case and the examples in Section 5.2). Since the An lattice is

usually defined as embedded in Hn
j ( Rn+1 [10], the key to this construction is to embed it in Rn, one-to-one

between Hn
j and Rn, with the help of a pair of orthogonal matrices X±

n (9) of size n× (n+1). Geometrically,

an equivalent basis for the An lattice can also be constructed by taking the n edges sharing a vertex of an n-

dimensional equilateral simplex. In dimension two, either construction results in the well-known 3-direction

linear box-spline on the hexagonal lattice. In dimension three, it yields the 6-direction box-spline on the

FCC lattice (Section 5.2) proposed by Entezari [7].

5.1. Lattice, Definition and Properties

The Root system An. The finite reflection group An is composed of n hyperplanes with their dihedral angles

described by the Coxeter diagram in Table 2. It can be formulated by the root system embedded in Rn+1

with Cartesian coordinates as follows [10, 22]:

An =
{
±(ein+1 − ejn+1) : 1 ≤ i 6= j ≤ n+ 1

}
. (8)

1Although, formally, the ± superscript indicates a pair of box-splines, we will in the following refer to it as a singleton,

assuming a choice has been made.
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In general, we can obtain n-dimensional roots of An by any orthogonal transformation that maps Hn
j to Rn.

A pair of such matrices are

X±
n := (A∗

P(A
∗±
n )−1)t = A±

nA
∗
P
t = A∗±

n

[
In −jn

]
: Hn

j → Rn (9)

where [23]

A∗
P :=

1

n+ 1


 (n+ 1)In − Jn

−jtn


 , (10)

A±
n := In +

1

n

(
−1±

√
n+ 1

)
Jn (11)

and

A∗±
n := In +

1

n

(
−1± 1√

n+ 1

)
Jn. (12)

Note that, while

(X±
n )

tX±
n = In+1 −

1

n+ 1
Jn+1 6= In+1, (13)

X±
n are orthogonal transformations that preserve lengths and angles, since Jn+1x = 0n+1 for x ∈ Hn

j and

hence

(X±
nx) · (X±

nx) = x · x.

The symmetry group of An consists of the symmetric group of all (n + 1)! permutations of its coordinates

and the group of changing the sign of all the coordinates, hence its order is (n+1)!2 [10]. In dimension two,

this follows from the 12-fold symmetry of the hexagon.

The Root lattice An. The root lattice An is generated by all the integer linear combinations of the roots of

An. A generator matrix for the An lattice is AP := [In − jn]
t ∈ R(n+1)×n. An can be either embedded in

Hn
j ( Rn+1 [10, page 109] or directly in Rn using the square generator matrix A±

n obtained by applying X±
n

to AP:

X±
nAP = A±

nA
∗
P
tAP = A±

n .

In low dimensions, A2
∼= A∗

2 is equivalent to the hexagonal lattice and A3
∼= D3 is equivalent to the FCC

lattice.

The Box-spline M±
An

. The n(n+ 1)/2-direction box-spline on the An lattice is defined by the non-parallel

directions of An transformed by X±
n :

Ξ±
An

:=
⋃

1≤i<j≤n+1

{X±
n (e

i
n+1 − ejn+1)} (14)

and the ‘centered’ and ‘re-normalized’ box-spline is defined as

M±
An

:= | detA±
n |MΞ

±

An

(·+
∑

ξ∈Ξ
±

An

ξ/2). (15)

The following lemma will be helpful to prove the properties of M±
An

.

12



Lemma 3. Let Ξ⊥v := {ξ ∈ Ξ : ξ · v = 0} be the vectors in Ξ orthogonal to v 6= 0. Then

max
v∈Rn

#(Ξ±
An

)⊥v =

(
n

2

)
.

Proof. We observe that, since X±
n maps Hn

j one-to-one onto Rn,

max
v∈Rn

#(Ξ±
An

)⊥v = max
ω∈Hn

j
(Rn+1

#Ξ⊥ω, where Ξ :=
⋃

1≤i<j≤n+1

{ein+1 − ejn+1}.

If we set ω := [ jn
−n ] ∈ Hn

j then ω · (ein+1− ejn+1) = 0 exactly when 0 ≤ i < j ≤ n, i.e. #Ξ⊥ω =
(
n
2

)
. To show

that
(
n
2

)
is also an upper bound, Let k be the maximum number of nonzero identical entries in ω. Without

loss of generality, these are the first k entries and these entries are 1. Since ω ∈ Hn
j , i.e. ω · jn+1 = 0,

k < n + 1. To show that the number of vectors in Ξ orthogonal to ω is maximized for k = n, we split

Ξ := Z1 ⊔ Z2 ⊔ Z3,

Z1 := {ein+1 − ejn+1 : 1 ≤ i < j ≤ k},

Z2 := {ein+1 − ejn+1 : 1 ≤ i ≤ k, k + 1 ≤ j ≤ n+ 1},

Z3 := {ein+1 − ejn+1 : k + 1 ≤ i < j ≤ n+ 1}.

Since for all ζ2 ∈ Z2, ζ2 · ω = 1 − ω(j) 6= 0, we have Z⊥ω
2 = ∅. Also

(
k
2

)
= #Z1 ≥ #Z⊥ω

1 and
(
n−k+1

2

)
=

#Z3 ≥ #Z⊥ω
3 , so that

#Ξ⊥ω = #Z⊥ω
1 +#Z⊥ω

3 ≤
(
k

2

)
+

(
n− k + 1

2

)

=
n2 − n

2
+ k2 − k − kn+ n =

(
n

2

)
+ (k − n)(k − 1) ≤

(
n

2

)

since (k − n)(k − 1) ≤ 0 for 1 ≤ k < n+ 1.

Theorem 2 (Properties ofM±
An

). The box-spline M±
An

has (i) polynomial degree n(n−1)/2, (ii) M±
An

∈ Cn−2

and (iii) the sequence
(
M±

An
(· − j)

)
j∈A

±
n Zn

is linearly independent.

Proof. (i) The degree follows from #ΞAn
− n = n(n+ 1)/2− n = n(n− 1)/2.

(ii) By Lemma 3, the maximal number of columns ofΞ±
An

lying in a hyperplane is
(
n
2

)
. Thereforem(Ξ±

An
) =

(n(n+ 1)/2− n(n− 1)/2)− 1 = n− 1 and M±
An

∈ Cn−2.

(iii) Since M±
An

is shifted on A±
nZ

n ∼= An, the sequence
(
M±

An
(· − j)

)
j∈A

±
n Zn

is linearly independent if and

only if Ξn := (A±
n )

−1Ξ±
An

is unimodular. By the second equality in (9), for each column of Ξn, i.e. for

1 ≤ i < j ≤ n+ 1,

(A±
n )

−1X±
n (e

i
n+1 − ejn+1) = A∗

P
t(ein+1 − ejn+1) =




ein, j = n+ 1

ein − ejn, j < n+ 1

and therefore Ξn = In ∪⋃
1≤i<j≤n{ein − ejn}. Since ξ · jn = 0 for ξ ∈ Ξ±

An
\In, we need only consider

square sub-matrices (basis matrices) Zn of Ξn that contain at least one unit vector. (Otherwise the
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determinant of the square sub-matrix is zero and this is compatible with unimodularity.) Now pick

any Zn of full rank with column ein for some 1 ≤ i ≤ n. Let Zn−1 be its submatrix obtained by

removing the column ein and row i and flipping the sign of any column that has a single -1 entry.

Then | detZn| = | detZn−1|. If, for some j, both ejn and ein − ejn had been columns in Zn−1, then

detZn−1 = 0 and this cannot be since Zn was chosen of full rank. Therefore Zn−1 ⊂ Ξn−1 and we

can now repeat the above determinant reduction until we read off that Ξ2 :=
[
1 0 1
0 1 −1

]
is unimodular.

Therefore Ξn is unimodular as claimed.

5.2. Examples

The 3-Direction Bivariate Box-Spline on the Hexagonal Lattice. In dimension two, we get the direction

matrix Ξ±
A2

(14) and the generator matrix A±
2 (11)

Ξ±
A2

:= X±
2




1 1 0

−1 0 1

0 −1 −1


 =

1

2


 2 1±

√
3 −1±

√
3

−2 −1±
√
3 1±

√
3


 , A±

2 :=
1

2


 1±

√
3 −1±

√
3

−1±
√
3 1±

√
3


 .

The box-splineM±
A2

defined by Ξ±
A2

andA±
2 is equivalent to the 3-direction linear box-spline on the hexagonal

lattice.

The 6-direction box-spline on the FCC lattice. In dimension three, we get the direction matrices (14)

Ξ+
A3

=
1

3




3 3 4 0 1 1

−3 0 1 3 4 1

0 −3 1 −3 1 4


 , Ξ−

A3
=




1 1 0 0 −1 −1

−1 0 −1 1 0 −1

0 −1 −1 −1 −1 0




and by (11), the generator matrices for the FCC (∼= A3) lattice,

A+
3 :=

1

3




4 1 1

1 4 1

1 1 4


 , A−

3 := −




0 1 1

1 0 1

1 1 0




This is equivalent to the 6-direction box-spline on the FCC lattice [7, 8]. Figure 8(b) shows the directions

and support of M−
A3

. According to [8], a quasi-interpolant of M±
A3

that provides the maximal approximation

order m(Ξ±
A3

) + 1 = 3 is defined by the functional

λ
A

±

3

Ξ±

A3

(f(·+ j)) := (f − 1

24

∑

ξ∈Ξ
±

A3

D2
ξf)(j), j ∈ A±

3 Z
n.
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6. Symmetric (n + 1)-direction Box-Spline on the A∗

n Lattice

The members of the family Mr [23] of n-variate box-splines are defined by r-fold convolution, in the n

directions of the Cartesian lattice plus a diagonal and generalize the ‘hat’ functions. The box-splines are

popular due to the linear independence of their Cartesian shifts and approximation properties. But the

footprints of the box-splines are asymmetrically distorted in the diagonal direction (see e.g. Figure 4(b)).

To make reconstruction of fields less biased, convolution and shifts on 2- and 3-dimensional non-Cartesian

lattices, the hexagonal lattice and the BCC lattice respectively, have recently been advocated [3, 6].

(a) n = 1 (b) n = 2

Figure 6. Orthogonal projection of unit cubes along the diagonal direction for (a) n = 1 and (b) n = 2. [23]

Kim and Peters [23] generalized bivariate box-splines on the hexagonal lattice and trivariate box-splines

on the BCC lattice to symmetric n-variate box-splines M∗±
r defined by the directions connecting to the

2(n + 1) nearest neighbors of the A∗
n lattice (see e.g. Figure 8(c) for n = 3). By defining the A∗

n lattice

directly in Rn, as we did for the An lattice, the geometric construction of the shifts of the symmetric

linear box-spline M∗±
1 on the A∗

n lattice simplifies to the classical construction of n-variate box-splines by

projection: The shifts of the symmetric linear box-spline on A∗
n are the orthogonal projection of a slab of

thickness 1, decomposed into unit cubes, along the diagonal of the cubes (Figure 6). By comparison, M1

has the same preimage, but its support is distorted by its anisotropic direction matrix. Kim and Peters [23]

documented the support, its partition, the desirable properties shared with Mr and, for the important case

r = 2, the quasi-interpolant construction associated with M∗±
2 in any number of variables n.

6.1. Lattice, Definition and Properties

The Root lattice A∗
n. As in the case of the An lattice, Kim and Peters [23] used a geometric construction of

A∗
n in Rn to obtain pairs of square generator matrices A∗±

n shown in Table 2, for the A∗
n lattice. We note

that A∗
2
∼= A2 is equivalent to the hexagonal lattice and A∗

3
∼= D∗

3 is equivalent to the BCC lattice. For each
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case, examples of generator matrices (12) are, for n = 2,

A∗±
2 :=

1

2


 1± 1/

√
3 −1± 1/

√
3

−1± 1/
√
3 1± 1/

√
3




and for n = 3,

A∗+
3 :=

1

6




5 −1 −1

−1 5 −1

−1 −1 5


 and A∗−

3 :=
1

2




1 −1 −1

−1 1 −1

−1 −1 1


 .

A∗
n is the optimal sampling lattice in dimensions two and three [7, 24, 25]. In higher dimensions, Figure 1

shows that An packs spheres better than the Cartesian lattice, making A∗
n a better sampling lattice than

Zn.

The Box-spline M±
A∗

n
. On the lattice (10) A∗

PZ
n ∼= A∗

n embedded in Rn+1, there are 2(n+ 1) lattice points

nearest the origin. [10] Their Cartesian coordinates are

{±(ejn+1 −
1

n+ 1
jn+1) ∈ Hn

j : 1 ≤ j ≤ n+ 1}. (16)

The (n + 1)-direction box-spline M±
A∗

n
on the A∗

n lattice is constructed by the directions to the 2(n + 1)

nearest lattice points. As in Section 5, we transform the directions of (16) to Rn by X±
n :

T∗±
1 := X±

n

(
In+1 −

1

n+ 1
Jn+1

)
= A∗±

n

[
In −jn

]

 In − Jn/(n+ 1) −jn/(n+ 1)

−jtn/(n+ 1) n/(n+ 1)




= A∗±
n

[
In −jn

]
=: A∗±

n T1.

With the square generator matrix A∗±
n , the (n+1)-direction (linear) box-spline on the A∗

n lattice is defined

as

M±
A∗

n
:= M∗±

1 := | detA∗±
n |MT

∗±

1
(·+

∑

ξ∈T
∗±

1

ξ/2) = | detA∗±
n |MT

∗±

1
.

The properties of M±
A∗

n
were already established in [23] and are listed for completeness.

Theorem 3 (Properties of M±
A∗

n
; [23]). The box-spline M±

A∗
n
has The polynomial degree 1, M±

A∗
n
∈ C0 and

the sequence
(
M±

A∗
n
(· − j)

)
j∈A∗Z

n
n
is linearly independent.

The family of box-splines M∗±
r constructed by the r-fold repetition of T∗±

1 , T∗±
r :=

⋃r
j=1 T

∗±
1 , was

investigated in [23]. We restate the main result on quasi-interpolants for r = 2: The quasi-interpolant of

M∗±
2 , defined by the functional

λ∗±
2 (f(·+ j)) := λ

A∗±
n

T2
(f(·+ j)) :=


f − 1

12

∑

ξ∈T
∗±

1

D2
ξf


 (j), j ∈ A∗±

n Zn

provides the maximal approximation order m(T∗±
2 ) + 1 = 4.

Examples of symmetric box-splines on the A∗
n lattice can be found in [23].
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7. Symmetric n(n − 1)-direction Box-Spline on the Dn Lattice

For n ≥ 3, the root lattice Dn can be viewed as a sub-lattice of the integer grid (Cartesian lattice),

namely all integer points whose sum is even [10]. The box-spline MDn
is constructed by the directions of the

root system Dn. In R3, this (also) yields the 6-direction box-spline on the FCC lattice [7]. (See Section 5.2.)

7.1. Lattice, Definition and Properties

The Root system Dn. The root system Dn can be described by the Coxeter diagram in Table 2. There it is

composed of all #Dn = 2n(n− 1) integer vectors of length
√
2, i.e., [10, 22]

Dn =
{
±ein ± ejn : 1 ≤ i 6= j ≤ n

}
. (17)

Due to the three rightmost mandatory nodes of the Coxeter diagram for Dn (Table 2), Dn is only defined

for n ≥ 3; and in dimension three, D3
∼= A3.

The Root lattice Dn. The root lattice Dn is generated by all integer linear combinations of the roots of Dn.

Alternatively, Dn is defined as all integer points of Zn where the sum of their elements is always even when

Dn is formulated as (17) [10]:

Dn := {i ∈ Zn : i · jn is even}.

A set of simple roots associated with the Coxeter diagram in Table 2, [22]

GDn
:=

{
−en−1

n − enn
}
∪

n−1⋃

j=1

{
ein − enn

}
=




1
1

. . .
1 −1

−1 −1 ··· −1 −1


 =


 In−1 −en−1

n−1

−jtn−1 −1




Figure 7. Coxeter diagram

of the root

system D4.

serves as a square generator matrix for the Dn lattice. For n 6= 4, the order

is n!2n since the symmetry group of Dn consists of all n! permutations of

coordinates, 2n−1 sign changes of even-sum coordinates and 2 sign changes of

the last coordinates. For n = 4, the symmetry group is that of the 24-cell

[10, 26]. Besides the symmetries of the first two bullets above, it consists of

the 3! permutations of three roots according to the symmetry of its Coxeter

diagram (Figure 7). Hence the total order of D4 is 4!× 23 × 3! = 1152.

The Box-spline MDn
. The n(n − 1)-directions of the box-spline on the Dn

lattice are the non-parallel directions of Dn:

ΞDn
:=

⋃

1≤i<j≤n

{
ein ± ejn

}
.

The centered and re-normalized box-spline is defined as

MDn
:= | detGDn

|M c
ΞDn

= | detGDn
|MΞDn

(·+
∑

ξ∈ΞDn

ξ/2).

The following lemma will be helpful to prove the properties of MDn
.
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Lemma 4. Let Ξ⊥v := {ξ ∈ Ξ : ξ · v = 0}. Then

max
v∈Rn

#Ξ⊥v
Dn

=




3 (n = 3)

(n− 1)(n− 2) (n > 3).

Proof. As in the proof of Lemma 3, we find an upper bound of #Ξ⊥v
Dn

and exhibit a vector v so that the

bound is taken on.

For v ∈ Rn, v 6= 0n, let, without loss of generality since we can rearrange rows in ΞDn
, the set of nonzero

element indices be {j ∈ Z : v ∈ Rn,v(j) 6= 0} = {1, . . . , k}, where 0 < k ≤ n.

We decompose ΞDn
into three disjoint subsets as

ΞDn
= Z1 ⊔ Z2 ⊔ Z3, where

Z1 := {ein ± ejn : 1 ≤ i < j ≤ k}
Z2 := {ein ± ejn : 1 ≤ i ≤ k < j ≤ n}
Z3 := {ein ± ejn : k < i < j ≤ n}.

Since Z1 = ∅ for k = 1 and either (ein + ejn) · v 6= 0 or (ein − ejn) · v 6= 0 for {ein ± ejn} ⊂ Z1 and k > 1,

#Z⊥v
1




= 0 (k = 1)

≤ #Z1/2 =
(
k
2

)
otherwise.

For ein ± ejn ∈ Z2 since (ein ± ejn) · v = v(i) 6= 0, #Z⊥v
2 = 0. And

#Z⊥v
3 =




0 (k ≥ n− 1)

#Z3 = 2
(
n−k
2

)
otherwise.

Therefore,

(i) if k = 1, #Ξ⊥v
Dn

= #(Z2 ⊔ Z3)
⊥v = #Z⊥v

2 +#Z⊥v
3 = 2

(
n−1
2

)
= (n− 1)(n− 2) =: f(n);

(ii) if k ≥ n− 1, #Ξ⊥v
Dn

= #(Z1 ⊔ Z2)
⊥v = #Z⊥v

1 +#Z⊥v
2 ≤

(
k
2

)
= 1

2k(k − 1)

=





1
2 (n− 1)(n− 2) = f(n)/2 (k = n− 1)

1
2n(n− 1) =: f(n+ 1)/2 (k = n);

(iii) if 2 ≤ k ≤ n − 2, define j := n − 2 − k and l := n − j − 4. Since k ≥ 2 and n ≥ 4 by assumption,

0 ≤ j ≤ n− 4 and l ≥ 0. Substituting n = j + 4 + l and k = n− 2− j = 2 + l yields

(
k

2

)
+ 2

(
n− k

2

)
− f(n) = −1

2
(l2 + 7l + 4j + 4jl + 6) < 0

and hence

#Ξ⊥v
Dn

= #Z⊥v
1 +#Z⊥v

2 +#Z⊥v
3 ≤

(
k

2

)
+ 2

(
n− k

2

)
≤ f(n).
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Since f(n+1) = f(n) n
n−2 , #Ξ⊥v

Dn
is maximized by f(3 + 1)/2 = 3 for n = 3 and f(n) for n > 3. The bound

is sharp since

max
v∈Rn

#Ξ⊥v
D3

= #Ξ⊥jn
D3

= 3

and for n > 3,

max
v∈Rn

#Ξ⊥v
Dn

= #Ξ
⊥ej

n

Dn
= (n− 1)(n− 2) = f(n)

where 1 ≤ j ≤ n.

Theorem 4 (Properties of MDn
). The box-spline MDn

has (i) polynomial degree n(n− 2), (ii) MD3
∈ C1

and for n > 3 MDn
∈ C2n−4, and (iii) the sequence (MDn

(· − j))j∈GDnZn is linearly dependent except for

n = 3.

Proof. (i) This follows from #ΞDn
− n = n(n− 1)− n = n(n− 2).

(ii) By Lemma 4, for n > 3, m(ΞDn
) = (n(n− 1)− (n− 1)(n− 2))− 1 = 2n− 3. So

m(ΞDn
) =




(6− 3)− 1 = 2 (n = 3)

2n− 3 (n > 3)

and MDn
∈ C1 if n = 3 and MDn

∈ C2n−4 if n > 3.

(iii) Since (cf. [27])

detGDn
= det


 In−1 −en−1

n−1

−jtn−1 −1


 = det In−1 det (−1− jtn−1I

−1
n−1e

n−1
n−1) = −2,

the sequence is linearly independent if and only if detZ ∈ {0,±2}, ∀Z ⊂ ΞDn
. But for Z0 ⊂ ΞDn

,

Z0 :=





Z1 (n even)[
Z1

1 1
1 −1 1

1

]
(n odd)

where Z1 :=

[
B

. . .
B

]
and B :=

[
1 1
1 −1

]
,

detZ0 = (−2)⌊n/2⌋ by [27]. That is detZ0 6∈ {0,±2} for n > 3.

7.2. Examples

The 6-Direction Box-Spline on the FCC Lattice. In dimension three,

ΞD3
:=




1 1 1 1 0 0

1 −1 0 0 1 1

0 0 1 −1 1 −1


 and GD3

:=




1 0 0

0 1 1

−1 −1 1


 .

Therefore MD3
∼= M±

A3
since it is centered and re-normalized (see Section 5.2).
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8. Symmetric (n + 2n−1)-direction Box-Spline on the D∗

n Lattice

The root lattice D∗
n, the dual of Dn, can be built as a super-lattice of the integer grid (Cartesian lattice)

by inserting additional points at the center of each hypercube. It is therefore a second family, besides A∗
n,

that includes the BCC lattice. The box-spline MD∗
n
is constructed by the n main axis directions and 2n−1

directions to the centers of the 2n hypercubes around the origin (see Figure 8 for n = 3). These directions

are pairwise parallel to those of the (n+2n−1)-direction box-spline on the Cartesian lattice, MZn , (Section 3)

but their lengths are different.

8.1. Lattice, Definition and Properties

The Root lattice D∗
n. Generator matrices for the D∗

n lattice can be obtained from those for Dn

G−t
Dn

=


 In−1 −en−1

n−1

−jtn−1 −1



−t

=




In−2 0n−2 0n−2

0t
n−2 1 −1

−jtn−2 −1 −1




−t

=




In−2 0n−2 0n−2

−jtn−1/2 1/2 −1/2

−jtn−1/2 −1/2 −1/2


 .

However, we prefer the simpler equivalent representation for the generator matrix (cf. [10])

GD∗
n
:=

1

2
jn ∪

n−1⋃

j=1

ejn =


 In−1 jn−1/2

0t
n−1 1/2


 .

The Box-spline MD∗
n
. The (n+2n−1)-direction box-spline on the D∗

n lattice is constructed by the directions

implied by the lattice points

ΞD∗
n
:= In ∪ 1

2
{enn +

n−1∑

j=1

±ejn}

corresponding to the centers of the 2n unit cubes adjacent to the origin and the n main axis directions.

The centered and re-normalized box-spline is defined as

MD∗
n
:= | detGD∗

n
|M c

ΞD∗
n

= | detGD∗
n
|MΞD∗

n
(·+

∑

ξ∈ΞD∗
n

ξ/2).

Theorem 5 (Properties of MD∗
n
). The box-spline MD∗

n
has (i) polynomial degree 2n−1, (ii) MD∗

n
∈ C2n−2

and (iii) the sequence
(
MD∗

n
(· − j)

)
j∈GD∗

n
Zn is linearly dependent.

Proof. (i) This follows from #ΞD∗
n
− n = n+ 2n−1 − n = 2n−1.

(ii) Since the directions in ΞD∗
n
are pairwise parallel to those of ΞZn (Section 3), MD∗

n
∈ C2n−2

.

(iii) The claim holds since In ⊂ ΞD∗
n
while detGD∗

n
= 1/2.
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8.2. Examples

The 7-Direction Box-Spline on the BCC Lattice. In dimension three, D∗
3
∼= A∗

3
∼= BCC lattice. With the

direction matrix Ξbcc (Figure 8(d)) and the generator matrix Gbcc (equivalent to GD∗
3
via unimodular

transformation but more symmetric)

Ξbcc := ΞD∗
3
:=

1

2




2 0 0 1 −1 1 −1

0 2 0 1 1 −1 −1

0 0 2 1 1 1 1


 , Gbcc :=

1

2




−1 1 1

1 −1 1

1 1 −1


 ,

we define

Mbcc := MD∗
3
:= | detGbcc|MΞbcc

(·+
∑

ξ∈Ξbcc

ξ/2) =
1

2
MΞbcc

(·+ (
1

2
,
1

2
,
3

2
)).

Lemma 5. The quasi-interpolant with optimal approximation order 4 for the spline space

Sbcc := span (Mbcc(· − j))j∈GbccZ3

is defined by the functional

λbccf := (f − 1

24

∑

ξ∈Ξbcc

D2
ξf)(0).

Proof. With

Ξ̃bcc := G−1
bccΞbcc =




0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 −1


 ,

the quasi-interpolant for the spline space span(M c
Ξ̃bcc

(· − j))j∈Z3 is defined by the functional (cf. [18])

λ̃bccf :=(f − 1

6
(D2

1 +D2
2 +D2

3 +D1D2 +D2D3 +D3D1))(0)

=(f − 1

24
((D1 +D2 +D3)

2 + (D1 +D2)
2 + (D2 +D3)

2 + (D3 +D1)
2

+D2
1 +D2

2 +D2
3)f)(0)

=(f − 1

24

∑

ξ∈Ξ̃bcc

D2
ξf)(0).

By Lemma 2, the quasi-interpolant for the spline space Sbcc is defined by λbccf .

For a discrete input f : GbccZ
3 → R, the discrete quasi-interpolant, using the 7 directions, has the form

λbcc (f(·+ j)) ≈ 19

12
f(j)− 1

24

∑

ξ∈Ξbcc

(f(j + ξ) + f(j − ξ)) .
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(a) (b) (c) (d)

Figure 8. Trivariate symmetric box-splines (top) directions (bottom) supports. (a) 7-direction box-spline

on Z3 (Section 3.2) (b) 6-direction box-spline on the FCC lattice (Section 5.2 and Section 7.2),

(c) 4-direction box-spline on the BCC lattice (Section 6) and (d) 7-direction box-spline on the

BCC lattice (Section 8.2).

9. Summary and Conclusion

We derived families of symmetric box-spline reconstruction filters for the irreducible root lattices that

exist in any number of dimensions by convolution in directions intrinsic to each lattice. This generalizes

the known constructions in two and three variables. Table 3 summarizes the findings of this paper, the

polynomial degree, continuity, linear independence and optimal quasi-interpolants. For computation, we

also point to Kim and Peters [20] where explicit BB-coefficients are derived for specific low-dimensional

box-splines and an algorithm for deriving the BB-coefficients in the general case.
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√
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⋃

1≤i<j≤n
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ein + ejn, e

i
n − ejn

}
n(n− 2) 2n− 2 no

3 FCC MD3
6-dir. box-spline[8]




1 1 1 1 0 0

1 −1 0 0 1 1

0 0 1 −1 1 −1


 3 3 yes (f − 1

24

∑
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D2
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n : σj ∈ {±1}} 2n−1 2n−2 + 2 no

3 BCC MD∗
3

1
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[5] A. Entezari, T. Möller, Extensions of the Zwart-Powell Box Spline for Volumetric Data Reconstruction

on the Cartesian Lattice, IEEE TVCG 12 (5) (2006) 1337–1344.
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