Box Spline Reconstruction on the Face-Centered Cubic Lattice

Minho Kim, Alireza Entezari and Jörg Peters

IEEE Visualization 2008
23 October
Overview

Box Spline Reconstruction on the Face-Centered Cubic Lattice
Overview

Box Spline Reconstruction on the Face-Centered Cubic Lattice
Box Spline Reconstruction on the Face-Centered Cubic Lattice
Overview

Box Spline Reconstruction on the Face-Centered Cubic Lattice
Box Spline Reconstruction on the Face-Centered Cubic Lattice
Box Spline Reconstruction on the Face-Centered Cubic Lattice
Overview

Box Spline Reconstruction on the Face-Centered Cubic Lattice
Overview

Box Spline Reconstruction on the Face-Centered Cubic Lattice

- Integrated with POV-Ray ray-tracer and source codes are freely available at http://www.cise.ufl.edu/research/SurfLab/08vis.
Example

original

standard method

our approach

100%

6%

Cartesian lattice
tri-quadratic B-spline

6%

FCC lattice
6-direction box spline
Example

original
standard method
our approach

100%
6%
6%

Cartesian lattice
tri-quadratic B-spline
FCC lattice
6-direction box spline

For (random) evaluation, our approach is **20%** faster!
Sampling Lattice: FCC Lattice

- Reconstruction
- Lattice
- Filter

FCC lattice
octet-truss
6-direction box spline
FCC Lattice: Definition
FCC Lattice: Definition
FCC Lattice: Definition

Cubic (Cartesian) lattice

\(\times \sqrt[3]{4} \)
FCC Lattice: Definition

Cubic (Cartesian) lattice $\times \sqrt[3]{4}$ + additional facet points
FCC Lattice: Definition

Cubic (Cartesian) lattice + additional facet points → “Face-Centered Cubic” lattice.
FCC Lattice: Voronoi Cell

12 nearest neighbor points
FCC Lattice: Voronoi Cell

12 nearest neighbor points
→ Voronoi cell = Rhombic Dodecahedron.
FCC Lattice: Applications
FCC Lattice: Applications

- Sampling efficiency: Cartesian $<$ FCC $<$ BCC. (Petersen & Middleton ’62)
FCC Lattice: Applications

- **Sampling efficiency:** Cartesian $<$ FCC $<$ BCC. (Petersen & Middleton ’62)

 Efficient sampling: minimizes number of samples necessary to reconstruct an isotropic band-limited signal.

- Multiresolution data structure (Inoue et al. 2008), Global illumination (Qiu et al. 2007),
Reconstruction Filter: 6-Direction Box Spline

- Reconstruction
- Lattice
 - FCC lattice
- Filter
 - Octet-truss
 - 6-direction box spline
Box-Splines: A Bivariate Example
Box-Splines: A Bivariate Example

Direction matrix
\[
\begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1 \\
\end{bmatrix}
\]
Box-Splines: A Bivariate Example

Direction matrix

\[
\begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]
Box-Splines: A Bivariate Example

Direction matrix\[
\begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]
Box-Splines: A Bivariate Example

Direction matrix

\[
\begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]
Box-Splines: A Bivariate Example

Direction matrix

\[
\begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]
Box-Splines: A Bivariate Example

Direction matrix

\[
\begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]

Finite support: Minkowski sum of the directions.
Box-Splines: A Bivariate Example

Direction matrix

\[
\begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]

- **Finite support**: Minkowski sum of the directions.
- **Piecewise polynomial** of degree
 \((\# \text{ of directions} - \dim \text{ran} \Xi)\).
Box-Splines: A Bivariate Example

Direction matrix
\[
\begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]

- **Finite support**: Minkowski sum of the directions.
- **Piecewise polynomial** of degree
 \((\# \text{ of directions} - \dim \text{ran } \Xi)\).
- Polynomial pieces delineated by the shifts of the knot planes
 (Hyperplanes spanned by the directions of \(\Xi\)).
Box-Splines: A Bivariate Example

Direction matrix

\[
\begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]

- **Finite support**: Minkowski sum of the directions.
- **Piecewise polynomial** of degree
 \((\# \text{ of directions} - \dim \text{ran} \Xi)\).
- Polynomial pieces delineated by the shifts of the knot planes
 (Hyperplanes spanned by the directions of \(\Xi\)).
- Polynomial pieces join **smoothly**: \(C^{(m(\Xi) - 1)}\).
Box-Splines: A Bivariate Example

Direction matrix

\[
\begin{bmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1 \\
\end{bmatrix}
\]

◮ **Finite support**: Minkowski sum of the directions.

◮ **Piecewise polynomial** of degree

(# of directions - \text{dim ran } \Xi).

◮ Polynomial pieces delineated by the shifts of the knot planes

(Hyperplanes spanned by the directions of \Xi).

◮ Polynomial pieces join **smoothly**: \(C^{m(\Xi)-1} \).

◮ “Box Splines” (Carl de Boor et al., 1993).
Box Splines vs. B-splines
Box Splines vs. B-splines

In general, compared to tensor-product B-splines with the same polynomial degree, box splines have
Box Splines vs. B-splines

In general, compared to tensor-product B-splines with the same polynomial degree, box splines have

- higher approximation order,
Box Splines vs. B-splines

In general, compared to tensor-product B-splines with the same polynomial degree, box splines have

- higher approximation order,
- smaller support and
Box Splines vs. B-splines

In general, compared to tensor-product B-splines with the same polynomial degree, box splines have

- higher approximation order,
- smaller support and
- higher symmetry.
6-Direction Box Spline
6-Direction Box Spline

Direction matrix

\[
\begin{bmatrix}
1 & -1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 & 1 \\
\end{bmatrix}
\]
6-Direction Box Spline

Direction matrix

\[
\begin{bmatrix}
1 & -1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 & 1
\end{bmatrix}
\]

Support = **Truncated Octahedron**.
6-Direction Box Spline

- Direction matrix

\[
\begin{bmatrix}
1 & -1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 & 1 \\
\end{bmatrix}
\]

- Support = **Truncated Octahedron**.

- Total degree cubic and \(C^1 \) **continuous**.
6-Direction Box Spline

- Direction matrix
 \[
 \begin{bmatrix}
 1 & -1 & 1 & 1 & 0 & 0 & 0 \\
 1 & 1 & 0 & 0 & 1 & -1 & 0 \\
 0 & 0 & 1 & -1 & 1 & 1 & 1 \\
 \end{bmatrix}.
 \]

- Support = \textbf{Truncated Octahedron}.
- Total degree cubic and C^1 \textit{continuous}.
- Approximation order is 3.
6-Direction Box Spline

- Direction matrix
 \[
 \begin{bmatrix}
 1 & -1 & 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 & 1 & -1 \\
 0 & 0 & 1 & -1 & 1 & 1
 \end{bmatrix}
 \]

- Support = Truncated Octahedron.

- Total degree cubic and \(C^1 \) continuous.

- Approximation order is 3.

- Exact rational coefficients are pre-computed.
6-Direction Box Spline (cont’d)
Polynomial Structure: Octet-Truss
Octet-Truss Structure
6-Direction Box Spline on the FCC Lattice
6-Direction Box Spline on the FCC Lattice

reconstruction

lattice

filter

FCC lattice

octet-truss

6-direction box spline
6-Direction Box Spline on the FCC Lattice

reconstruction

lattice

FCC lattice

octet-truss

6-direction box spline

filter
6-Direction Box Spline on the FCC Lattice

- Reconstruction
- Lattice
 - FCC lattice
 - Octet-truss
- Filter
 - 6-direction box spline
6-Direction Box Spline on the FCC Lattice

reconstruction

lattice

FCC lattice

octet-truss

6-direction box spline

filter
6-Direction Box Spline on the FCC Lattice
Polynomial structure → octet-truss structure.
6-Direction Box Spline on the FCC Lattice

- Polynomial structure \rightarrow octet-truss structure.
- Shifts are linearly independent \rightarrow basis functions.
Comparison: Math
Comparison: Math

<table>
<thead>
<tr>
<th>lattice filter</th>
<th>Standard</th>
<th>Our approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cartesian tri-quadratic B-spline</td>
<td>6-direction box spline</td>
</tr>
<tr>
<td></td>
<td>FCC</td>
<td></td>
</tr>
</tbody>
</table>
Comparison: Math

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Our approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice filter</td>
<td>Cartesian tri-quadratic B-spline</td>
<td>FCC 6-direction box spline</td>
</tr>
<tr>
<td>polynomial structure</td>
<td>cubes</td>
<td>octet-truss</td>
</tr>
</tbody>
</table>
Comparison: Math

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Our approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice filter</td>
<td>Cartesian</td>
<td>FCC</td>
</tr>
<tr>
<td></td>
<td>tri-quadratic</td>
<td>6-direction</td>
</tr>
<tr>
<td></td>
<td>B-spline</td>
<td>box spline</td>
</tr>
<tr>
<td>polynomial structure</td>
<td>cubes</td>
<td>octet-truss</td>
</tr>
<tr>
<td>approximation order</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Comparison: Math

<table>
<thead>
<tr>
<th>lattice filter</th>
<th>polynomial structure</th>
<th>approximation order</th>
<th>total degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Cartesian</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Our approach</td>
<td>FCC</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

- **lattice**: Cartesian, FCC
- **filter**: tri-quadratic, 6-direction box spline
- **approximation order**: 3
- **total degree**: 6
Comparison: Math

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Our approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice filter</td>
<td>Cartesian tri-quadratic B-spline</td>
<td>FCC 6-direction box spline</td>
</tr>
<tr>
<td>polynomial structure</td>
<td>cubes</td>
<td>octet-truss</td>
</tr>
<tr>
<td>approximation order</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>total degree</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>stencil size</td>
<td>27</td>
<td>16</td>
</tr>
</tbody>
</table>
Comparison: Math

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Our approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice</td>
<td>Cartesian</td>
<td>FCC</td>
</tr>
<tr>
<td>filter</td>
<td>tri-quadratic</td>
<td>6-direction box spline</td>
</tr>
<tr>
<td>polynomial structure</td>
<td>cubes</td>
<td>octet-truss</td>
</tr>
<tr>
<td>approximation order</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>total degree</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>stencil size</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>sampling efficiency</td>
<td>poor</td>
<td>good</td>
</tr>
</tbody>
</table>
Comparison: Reconstruction (Carp dataset)

- Original
- Standard method: Cartesian lattice, tri-quadratic B-spline, 6% error
- Our approach: FCC lattice, 6-direction box spline, 6% error
Comparison: Reconstruction (Marschner-Lobb function)
Comparison: Reconstruction (Marschner-Lobb function)

density 0.07^{-3}

Standard

Our approach
Comparison: Reconstruction (Marschner-Lobb function)

density 0.06^{-3}

Standard

Our approach
Comparison: Reconstruction (Marschner-Lobb function)

density 0.05^{-3}

Standard Our approach
Comparison: Computation Time

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Standard</th>
<th>Our approach</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marschner-Lobb</td>
<td>135</td>
<td>98</td>
<td>72%</td>
</tr>
<tr>
<td>Carp</td>
<td>515</td>
<td>358</td>
<td>69%</td>
</tr>
</tbody>
</table>

- Rendering time (in seconds) to generate ray-casted images.
Try yourself!

For more information, please visit

http://www.cise.ufl.edu/research/SurfLab/08vis
Thank you!
Selected References

