Homework #5

June 17, 2011

1. A 3×3 matrix B is known to have eigenvalues 0, 1, 2.

- (a) Find rank(B)
- (b) Find det $(B^T B)$

Solution:

(a) Since 0 has its algebraic multiplicity 1, its geometric multiplicity should be 1. Therefore,

$$\dim E_0 = \dim (\operatorname{null}(B - 0I)) = \dim \operatorname{null}(B) = \operatorname{nullity}(B) = 1.$$

Therefore,

$$rank(B) = 3 - nullity(B) = 2.$$

(b) Note that $\det B = 0 \cdot 1 \cdot 2 = 0$. Then,

$$\det(B^T B) = \det B^T \det B = (\det B)^2 = 0$$

2. Let

$$A = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}$$

(a) Without using Gaussian elimination, find rank(A).

Hint: For any x, how does Ax look like?

(b) Without using Gaussian elimination, find the eigenvalues and eigenspaces. Hint:

 \bullet Try to find x such that

$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \end{bmatrix} \mathbf{x} = \lambda \mathbf{x}.$$

• What is $\operatorname{nullity}(A)$? How can we find the vectors in $\operatorname{null}(A)$ easily?

Solution:

(a) For any \boldsymbol{y} ,

$$A\mathbf{y} = \begin{bmatrix} 1\\2\\1 \end{bmatrix} (\begin{bmatrix} 2 & 1 & 2 \end{bmatrix} \mathbf{y}) = \begin{pmatrix} \begin{bmatrix} 2\\1\\2 \end{bmatrix} \cdot \mathbf{y} \end{pmatrix} \begin{bmatrix} 1\\2\\1 \end{bmatrix}.$$

1

Therefore Ay is a multiple of (1, 2, 1) hence

$$\operatorname{col}(A) = \operatorname{span}\left(\begin{bmatrix} 1\\2\\1 \end{bmatrix} \right)$$

and rank(A) = 1.

(b)

$$A \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \left(\begin{bmatrix} 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right) = 6 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Therefore

$$E_6 = \operatorname{span}\left(\begin{bmatrix}1\\2\\1\end{bmatrix}\right).$$

On the other hands, if we choose any vector \boldsymbol{x} orthogonal to (2,1,2),

$$A\boldsymbol{x} = \begin{bmatrix} 1\\2\\1 \end{bmatrix} (\begin{bmatrix} 2 & 1 & 2 \end{bmatrix} \boldsymbol{x}) = \boldsymbol{0}.$$

hence $x \in E_0 = \text{null}(A - 0I) = \text{null}(A)$. From (a), nullity(A) = 3 - rank(A) = 2 therefore we have two linearly independent such vectors, e.g., (1, -2, 0) and (0, -2, 1). Therefore

$$E_0 = \operatorname{span}\left(\begin{bmatrix} 1\\ -2\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ -2\\ 1 \end{bmatrix}\right).$$

3. Let a + b = c + d.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

- (a) Show that (1,1) is an eigenvector of A.
- (b) Find both eigenvalues of A.

Solution:

(a)

$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a+b \\ c+d \end{bmatrix} = (a+b) \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Therefore, (1,1) is the eigenvector with its eigenvalue a+b.

(b) Let $\lambda_1 = a + b$ and λ_2 are two eigenvalues of A

$$\det(A - \lambda I) = (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + (ad - bc) = (\lambda - \lambda_1)(\lambda - \lambda_2).$$

Therefore $\lambda_1 + \lambda_2 = a + d + \lambda_2 = a + d$ hence $\lambda_2 = 0$. Therefore $\lambda_1 + \lambda_2 = a + b + \lambda_2 = a + d$ hence $\lambda_2 = d - b$.

- 4. Suppose A has eigenvalues 0, 3, 5 with linearly independent eigenvectors u, v, w.
 - (a) Give a basis for null(A) and a basis for col(A). Hint:
 - $\operatorname{null}(A) = E_0$.
 - Consider the linear combination $c_1 \mathbf{v} + c_2 \mathbf{w}$.
 - (b) Show that Ax = u has no solution.

Hint: If it did, then () would be in col(A) and this contradicts the assumption.

Solution:

(a) $\operatorname{null}(A) = \operatorname{null}(A - 0I) = E_0 = \operatorname{span}(\boldsymbol{u}).$

For any linear combination $c_1 \boldsymbol{v} + c_2 \boldsymbol{w}$,

 $c_1 v + c_2 w = \frac{c_1}{3} A v + \frac{c_2}{5} A w = A \left(\frac{c_1}{3} v + \frac{c_2}{5} w \right) \in col(A),$

therefore

 $col(A) = span(\boldsymbol{v}, \boldsymbol{w}).$

(b) $Ax = v + w = \frac{1}{3}Av + \frac{1}{5}Aw = A\left(\frac{v}{3} + \frac{w}{5}\right)$

All solutions are of the form

 $\frac{\boldsymbol{v}}{3} + \frac{\boldsymbol{w}}{5} + c\boldsymbol{u}.$

- (c) Assume that Ax = u has a solution x_0 . Then $u \in col(A)$, but u is linearly independent of both v and w therefore cannot be in col(A).
- 5. If A has an eigenvalue $\lambda_1 = 2$ with its eigenvector $\boldsymbol{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\lambda_2 = 5$ with $\boldsymbol{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, what is A?

Solution:

$$A = PDP^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & 5 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}.$$

6. Let the $n \times n$ matrix A have the eigenvalues $\lambda_1, \ldots, \lambda_n$ and be diagonalizable. Find the eigenvalues of the $2n \times 2n$ block matrix

$$B = \begin{bmatrix} A & O \\ O & 2A \end{bmatrix}.$$

Solution:

$$\begin{split} B &= \begin{bmatrix} A & O \\ O & 2A \end{bmatrix} = \begin{bmatrix} PDP^{-1} & O \\ O & 2PDP^{-1} \end{bmatrix} = \begin{bmatrix} P & O \\ O & P \end{bmatrix} \begin{bmatrix} D & O \\ O & 2D \end{bmatrix} \begin{bmatrix} P^{-1} & O \\ O & P^{-1} \end{bmatrix} \\ &= \begin{bmatrix} P & O \\ O & P \end{bmatrix} \begin{bmatrix} D & O \\ O & 2D \end{bmatrix} \begin{bmatrix} P & O \\ O & P \end{bmatrix}^{-1} \end{split}$$

- 7. For an $n \times n$ matrix A, suppose $A^2 = A$.
 - (a) Show that 0 is an eigenvalue of A and $E_0 = \text{null}(A)$.
 - (b) Show that 1 is an eigenvalue of A and $E_1 = col(A)$.
 - (c) Show that A is diagonalizable.

Hint: A is diagonalizable if the sum of all the dimensions of eigenspaces (geometric multiplicities) is n.

Solution:

(a) There is an error in this question. The question should be "For $A \neq I$, show that 0 is an eigenvalue of A and $E_0 = \text{null}(A)$.

$$A^2 = A \rightarrow A(A - I) = O$$

Let B := A - I. Since $A \neq I$, there is at least one column of B which is not a zero vector. Let \boldsymbol{x} is that vector. Then, if we consider only that column in AB = O, $A\boldsymbol{x} = \boldsymbol{0}$ therefore \boldsymbol{x} is an eigenvector of A corresponding to the eigenvalue 0.

For any $\boldsymbol{x} \in E_0$, $A\boldsymbol{x} = \boldsymbol{0}$ therefore $\boldsymbol{x} \in \text{null}(A)$. Also, for any $\boldsymbol{y} \in \text{null}(A)$, $A\boldsymbol{y} = \boldsymbol{0} = 0\boldsymbol{y}$ therefore $\boldsymbol{y} \in E_0$. Overall, $E_0 = \text{null}(A)$.

(b) Let

$$A = \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_n \end{bmatrix}.$$

Then, from $A^2 = A$,

$$A\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

Therefore for any a_i ,

$$A\boldsymbol{a}_i = \boldsymbol{a}_i$$

hence 1 is an eigenvalue of A. And

$$E_1 = \text{span}(a_1, a_2, \dots, a_n) = \text{col}(A).$$

(c) Since $\operatorname{rank}(A) = \dim \operatorname{col}(A) = \dim E_1$ and $\operatorname{nullity}(A) = \dim \operatorname{null}(A) = \dim E_0$, by the rank theorem,

$$rank(A) + nullity(A) = dim E_1 + dim E_0 = n.$$

Therefore, the union of the bases of E_0 and E_1 has n linearly independent vector, which means that A is diagonalizable. (Theorem 4.27 on p.304)

8. Suppose that both A and B are diagonalizable by the same P:

$$A = PD_1P^{-1}$$
 and $B = PD_2P^{-1}$.

Show that AB = BA.

Solution:

$$AB = PD_1P^{-1}PD_2P^{-1} = PD_1D_2P^{-1}$$

and

$$BA = PD_2P^{-1}PD_1P^{-1} = PD_2D_1P^{-1}$$

but

$$D_1D_2 = D_2D_1$$

since D_1 and D_2 are diagonal.

9. Let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

and AB = BA.

- (a) Show that B is diagonal.
- (b) Show that A and B have the same eigenvectors.

Solution:

(a)

$$AB = \begin{bmatrix} a & b \\ 2c & 2d \end{bmatrix}$$
 and $BA = \begin{bmatrix} a & 2b \\ c & 2d \end{bmatrix}$

Since AB = BA, b = 2b and c = 2c hence b = c = 0 and B is diagonal.

(b) Since both A and B are diagonal, they are diagonalized by the same I, but with different eigenvalues.