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Practical Methods

What if a solution cannot be expressed in terms of elementry
functions?

◮ Graphical methods (“direction field” in Chap.1)

◮ Numerical methods (Chap.10)

◮ Series methods (Chap.9)
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Power Series

Definition

a0 + a1(x − x0) + a2(x − x0)2
+ · · · =

∞
∑

k=0

ak(x − x0)k,

where a0, a1, · · · , x0 are constants.

A power series may...

1. Converge only for the single value x = x0.

2. Converge absolutely for values of x in a neighborhood of x0,
i.e., converge for |x − x0| < h; diverge for |x − x0| > h. At the
end points x0 ± h, it may either converge or diverge.

3. Converge absolutely for all values of x, i.e., for −∞ < x < ∞.



Power Series (cont’d)

Interval of convergence

◮ The set of values of x for which the power series converges.

◮ To determine an interval of convergence, use the following
“ratio test”:
A series

u1 + u2 + · · · + un + · · · =

∞
∑

k=1

uk

converges absolutely if

lim
n→∞

∣

∣

∣

∣

∣

un+1

un

∣

∣

∣

∣

∣

= k < 1.

→ Find the values of x which satisfy the above inequality.



Power Series (cont’d)

Theorem 37.16
If a power series

∞
∑

k=0

ak(x − x0)k

converges on an interval I : |x − x0| < R, where R is a positive
constant, then the power series defines a function f (x) which is
continuous for each x in I.

◮ If a power series converges, which function does it define? →
(mostly) hard to answer

◮ Conversely, given a continuous function (on an interval I), is
there a power series which defines it?



Power Series (cont’d)
◮ Theorem 37.2: If

f (x) =
∞
∑

k=0

ak(x − x0)k, I : |x − x0| < R,

then

f ′(x) =
∞
∑

k=1

kak(x − x0)k−1, I : |x − x0| < R.

◮ Theorem 37.23: If

f (x) =
∞
∑

k=0

ak(x−x0)k and g(x) =
∞
∑

k=0

bk(x−x0)k, I : |x−x0| < R,

then f (x) = g(x) iff ak = bk,∀k.
◮ Theorem 37.24: If

f (x) =
∞
∑

k=0

ak(x − x0)k, I : |x − x0| < R,

then ak =
f k(x0)

k!
, ∀k.



Taylor Series Expansion

Definition

f (x) =
∞
∑

k=0

f (k)(x0)
k!

(x − x0)k, |x − x0| < R.

◮ Maclaurin series: Taylor series with x0 = 0.

◮ Is the Taylor series expansion of a function f (x) actually the
power series that defines (or converges to) the given function
f (x)? (e.g., f (x) = e−1/x2

)
→ Taylor’s theorem required.

http://en.wikipedia.org/wiki/Taylor_series
http://en.wikipedia.org/wiki/Taylor's_theorem


Taylor’s Theorem

Let (Taylor series with remainder)

f (x) =
n
∑

k=0

f (k)(x0)
k!

(x − x0)k
+ Rn(x), |x − x0| < h,

where

Rn(x) :=
∞
∑

k=n+1

f (k)(x0)
k!

(x−x0)k
=

f (n+1)(X)(x − x0)n+1

(n + 1)!
, (Lagrange form)

and X is between x and x0.
The Taylor series

∑∞
k=0 f (k)(x0)(x − x0)k defines (or converges to)

f (x) on I : |x − x0| < h iff lim
n→∞

Rx(x)→ 0.

◮ Analytic function

http://en.wikipedia.org/wiki/Analytic_function


Solution of L.D.E.s by Series Methods

To solve a L.D.E. of the form

y(n)
+ fn−1(x)y(n−1)

+ · · · + f1(x)y′ + f0(x)y = Q(x).

Theorem 37.51
If each of f0(x), · · · , fn−1(x),Q(x) is analytic at x = x0, then there is a
unique solution y(x) of the D.E. which is also analytic at x = x0

satisfying the n initial conditions

y(x0) = a0, y
′(x0) = a1, · · · , y

(n−1)(x0) = an−1.

→ But how to find the solution?

1. Successive differentiations method

2. Undetermined coefficients method



Method #1. Successive Differentiation

◮ Find
{f (k)(x0)}∞k=0

by successively differentiating the original D.E. and evaluating
at x = x0 using the initial conditions.

◮ Usually find only several terms at the beginning.
→ Approximate solution



Method #2. Undetermined Coefficients

◮ No differentiating required→ Useful when it is difficult to
obtain successive derivatives.

◮ Set

y(x) =
∞
∑

k=0

akxk

and substitute into the D.E. to find {ak}
∞
k=0.

◮ Usually find only several terms at the beginning.
→ Approximate solution
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Ordinary and Singular Points

Can we still apply the methods in Lesson 37 when Theorem 37.51
(p.538) is not satisfied?
Example: Solve the followwing at x = 0.

x2y′′ + xy′ + (x2 − 1/4)y = 0

Definition
For the D.E.

y(n)
+ Fn−1(x)y(n−1)

+ · · · + F1(x)y′ + F0(x)y = Q(x),

a point x = x0 is called

◮ an ordinary point of the D.E. if each function F0,F1, · · · ,Fn−1

and Q is analytic at x = x0 and

◮ a singular point of the D.E. if one of more of the functions
F0,F1, · · · ,Fn−1 and Q is not analytic at x = x0.



Regular and Irregular Singularities

For a second order L.D.E.

y′′ + F1(x)y′ + F2(x)y = 0,

where F1 and F2 are continuous function of x on a common
interval I, a point x = x0 is called

◮ a regular singularity of the D.E. if (x − x0)F1(x) and
(x − x0)2F2(x) are both analytic at x = x0 and
→ can be solved by “method of Frobenius series.”

◮ an irregular singularity of the D.E. either (x − x0)F1(x) or
(x − x0)2F2(x) is not analytic at x = x0.
→ too difficult!



Method of Frobenius Series

Frobenius series

y = (x − x0)m
∞
∑

j=0

aj(x − x0)j, a0 , 0.

Note: Taylor series is a special case of a Frobenius series. (when
m is a non-negative integer)

Theorem 40.32 (p.573)
If x = x0 is a regular singularity of the D.E.

(x − x0)2y′′ + (x − x0)fx(x)y′ + f2(x)y = 0,

where f1(x) := (x − x0)F1(x) and f2(x) := (x − x0)2F2(x), if each
Taylor series expansion of f1(x) and f2(x) is valid in the interval
I : |x − x0| < r, then at least one Frobenius series solution is also
valid in I except perhaps for x = x0.

http://en.wikipedia.org/wiki/Frobenius_series


Method of Frobenius Series (cont’d)
1. Assume x0 = 0 then the D.E. becomes

x2y′′ + xf1(x)y′ + f2(x)y = 0.

2. Since f1(x) and f2(x) are analytic at x = 0, f1(x) =
∑∞

j=0 bjxj and

f2(x) =
∑∞

j=0 cjxj.

3. Substitute a Frobenius series y(x) = xm∑∞
j=0 ajxj and its

derivatives, y′(x) and y′′(x), into the D.E.
4. After arrangement, we get (40.37) (p.574)

a0[m(m − 1) + b0m + c0]xm
+ (· · · )xm+1

+ · · · + (· · · )xm+n ≡ 0.

5. Indical equation: m(m − 1) + b0m + c0 = 0.
◮ Case 1: m1 and m2 are distinct and their difference is not an

integer.
◮ Caes 2: m1 and m2 differ by an integer N.

◮ Case 2A: The coefficient of aN = 0 and the remainder terms in
the coefficients of xm+N also add to zero.

◮ Case 2B: The coefficient of aN = 0 but the remainder terms in
the coefficients of xm+N do not add to zero.

◮ Case 3: m1 = m2.



Case 1: m1 and m2 are distinct and their difference is not
an integer

1. For m1, j = 1, 2, find a set of a1, a2, · · · , an, · · · in terms of m1

and a0 which results in a solution y1.

2. Do the same for m2 and find another solution y2.

3. Due to Theorem 40.39, the general solution is y = c1y1 + c2y2.



Caes 2: m1 and m2 differ by an integer N.

1. Let the roots are m and m + N, N > 0.

2. For m + N, the indical equation becomes

(m + N)(m + N − 1) + b0(m + N) + c0 = 0.

3. In (40.37), this is the same as the first term of the coefficient
of xm+N .
→ Two sub-cases.



Case 2A: The coefficient of aN = 0 and the remainder
terms in the coefficients of xm+N also add to zero.

1. In this case, the coefficient of xm+N in (40.37) is zeo
regardless of aN .

2. For m, we can find two sets of coefficients a1, a2, · · · , thus two
solutions y1 and y2, one in terms of (arbitrary) a0 and the other
in terms of (arbitrary) aN .

3. The solution, say y3, obtained by m + N in terms of a0 is
linearly dependent.

4. Therefore the general solution is y = y1 + y2. (Note that y1 and
y2 each contain arbitrary constants a0 and aN .)



Case 2B: The coefficient of aN = 0 but the remainder
terms in the coefficients of xm+N do not add to zero.

1. There is only one Frobenius series solution y1(x), obtained for
m + N in terms of a0.

2. A second independent solution has the form

y2(x) = u(x) − bNy1(x) log x, x > 0,

where

u(x) := xm
∞
∑

j=0

bjx
j

is a Frobenius solution.



Case 3: m1 = m2.

1. There is only one Frobenius series solution in terms of a0.

2. A second solution can be obtained by the method of Case 2B
with N = 0.
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Legendre Equation

d
dx

[

(1 − x2)
d
dx

y(x)

]

+ k(k + 1)y = (1 − x2)y′′ − 2xy′ + k(k + 1)y = 0

◮ x = 0 is an ordinary point
→ can be solved by the method in Lesson 37B. (“successive
differentiations” or “undetermined coefficients”)

◮ x = ±1 are regular singular points.
◮

f0(x) :=
k(k + 1)

1 − x2
and f1(x) := −

2x

1 − x2

are both valid for |x| < 1.
→ has a series solution of x valid for |x| < 1.

◮ General solution:

y(x) = c1Pk(x) + c2Qk(x),

where Pk(x) is called “Legendre polynomial” and Qk(x) is
called “Legendre function of the second kind.” (Mathworld)

http://mathworld.wolfram.com/LegendreDifferentialEquation.html


Applications of Legendre Equation

◮ Steady state temperature within a solid spherical ball when
the temparature at points of its boundary is know.
→ Solving Laplace’s equation in spherical coodrinates.
(Mathworld)

◮ Quantum mechanical model of the hydrogen atom

http://en.wikipedia.org/wiki/Laplace's_equation
http://mathworld.wolfram.com/LaplacesEquationSphericalCoordinates.html
http://www.physics.drexel.edu/~tim/open/hydrofin
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Bessel Equation

x2y′′ + xy′ + (x2 − k2)y = 0

◮ x = 0 is a regular singularity.
→ Frobenius solution

y(x) = xm
∞
∑

j=0

akxk.

◮ Roots of the indical equation: ±k.
◮ General solution:

y(x) =















c1Jk(x) + c2J−k(x) k , 0, 1, 2, 3, · · ·

c1Jk(x) + c2Nk(x) k = 1, 2, 3, · · ·

where Jk(x) is called “Bessel function of the first kind of index
k” and Nk(x) is called “Bessel function of the second kind of
index k.” (See p.584 for k = 0.)



Applications of Bessel Eqauation

◮ Lapalce’s equation in cylindrical coordinates.

◮ ...and more (Wikipedia)

http://en.wikipedia.org/wiki/Bessel_function
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Laguerre Equation

xy′′ + (1 − x)y′ + ky = 0, k real

◮ Has non-singular solutions only if k is an integer.

◮ x = 0 is a regular singularity
→ Frobenius solution

y(x) = xm
∞
∑

j=0

akxk.

◮ Roots of the indical equation: multiple 0.
→ only one Frobenius solution and the second solution has a
logarithmic form. (40.51)

◮ Laguerre polynomial Lk(x) is a solution. (when k = 0, 1, 2, · · · .)



Applications of Laguerre Equation

◮ Particle in a spherically symmetric potential
→ Radial equation of the Schrödinger equation

◮ Laguerre polynomials are used for Gaussian quadrature to

numerically compute integrals of the form
∫ ∞

0
f (x)dx.

http://en.wikipedia.org/wiki/Particle_in_a_spherically_symmetric_potential
http://en.wikipedia.org/wiki/Schrodinger_equation
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