Mathematical Models for Engineering Problems and Differential Equations

Minho Kim

November 29, 2009

Table of contents I

Chapter 9: Series Methods

Lesson 37: Power Series Solutions of Linear Differential Equations.

Lesson 38. Series Solution of y' = f(x, y)

Lesson 39. Series Solution of a Nonlinear Differential Equation of Ord Lesson 40. Ordinary Points and Singularities of a Linear Differential E

Lesson 40. Ordinary Points and Singularities of a Linear Differential E Lesson 41. The Legendre Differential Equation. Legendre Functions.

Lesson 42. The Bessel Differential Equation. Bessel Function of the F

Lesson 43. The Laguerre Differential Equation. Laguerre Polynomials

Practical Methods

What if a solution cannot be expressed in terms of elementry functions?

- Graphical methods ("direction field" in Chap.1)
- Numerical methods (Chap.10)
- Series methods (Chap.9)

Chapter 9: Series Methods

Lesson 37: Power Series Solutions of Linear Differential Equations.

Lesson 38. Series Solution of y' = f(x, y)

Lesson 39. Series Solution of a Nonlinear Differential Equation of Ord

Lesson 40. Ordinary Points and Singularities of a Linear Differential

Lesson 41. The Legendre Differential Equation. Legendre Functions.

Lesson 42. The Bessel Differential Equation. Bessel Function of the F

Power Series

Definition

$$a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots = \sum_{k=0}^{\infty} a_k(x - x_0)^k$$

where a_0, a_1, \cdots, x_0 are constants.

A power series may...

- 1. Converge only for the single value $x = x_0$.
- 2. Converge absolutely for values of x in a neighborhood of x_0 , i.e., converge for $|x x_0| < h$; diverge for $|x x_0| > h$. At the end points $x_0 \pm h$, it may either converge or diverge.
- 3. Converge absolutely for all values of x, i.e., for $-\infty < x < \infty$.

Power Series (cont'd)

Interval of convergence

- ▶ The set of values of *x* for which the power series converges.
- To determine an interval of convergence, use the following "ratio test":

A series

$$u_1 + u_2 + \dots + u_n + \dots = \sum_{k=1}^{\infty} u_k$$

converges absolutely if

$$\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|=k<1.$$

 \rightarrow Find the values of x which satisfy the above inequality.

Power Series (cont'd)

Theorem 37.16

If a power series

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k$$

converges on an interval $I: |x - x_0| < R$, where R is a positive constant, then the power series **defines a function** f(x) which is continuous for each x in I.

- ▶ If a power series converges, which function does it define? → (mostly) hard to answer
- Conversely, given a continuous function (on an interval I), is there a power series which defines it?

Power Series (cont'd)

► Theorem 37.2: If

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k, \quad I: |x - x_0| < R,$$

then

$$f'(x) = \sum_{k=1}^{\infty} ka_k(x - x_0)^{k-1}, \quad I: |x - x_0| < R.$$

► Theorem 37.23: If

Theorem 37.24: If

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$
 and $g(x) = \sum_{k=0}^{\infty} b_k (x - x_0)^k$, $I : |x - x_0| < R$,

then f(x) = g(x) iff $a_k = b_k$, $\forall k$.

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k, \quad I : |x - x_0| < R,$$

then $a_k = \frac{f^k(x_0)}{k!}$, $\forall k$.

Taylor Series Expansion

Definition

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \quad |x - x_0| < R.$$

- ▶ Maclaurin series: Taylor series with $x_0 = 0$.
- ▶ Is the Taylor series expansion of a function f(x) actually the power series that defines (or converges to) the given function f(x)? (e.g., $f(x) = e^{-1/x^2}$)
 - → Taylor's theorem required.

Taylor's Theorem

Let (Taylor series with remainder)

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x), \quad |x - x_0| < h,$$

where

$$R_n(x) := \sum_{k=n+1}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = \frac{f^{(n+1)}(X)(x - x_0)^{n+1}}{(n+1)!}, \quad \text{(Lagrange form)}$$

and X is between x and x_0 .

The Taylor series $\sum_{k=0}^{\infty} f^{(k)}(x_0)(x-x_0)^k$ defines (or converges to) f(x) on $I:|x-x_0|< h$ iff $\lim_{n\to\infty}R_x(x)\to 0$.

Analytic function

Solution of L.D.E.s by Series Methods

To solve a L.D.E. of the form

$$y^{(n)} + f_{n-1}(x)y^{(n-1)} + \dots + f_1(x)y' + f_0(x)y = Q(x).$$

Theorem 37.51

If each of $f_0(x), \dots, f_{n-1}(x), Q(x)$ is analytic at $x = x_0$, then there is a unique solution y(x) of the D.E. which is also analytic at $x = x_0$ satisfying the n initial conditions

$$y(x_0) = a_0, y'(x_0) = a_1, \dots, y^{(n-1)}(x_0) = a_{n-1}.$$

- → But how to find the solution?
 - Successive differentiations method
 - 2. Undetermined coefficients method

Method #1. Successive Differentiation

Find

$$\{f^{(k)}(x_0)\}_{k=0}^{\infty}$$

by successively differentiating the original D.E. and evaluating at $x = x_0$ using the initial conditions.

- Usually find only several terms at the beginning.
 - → Approximate solution

Method #2. Undetermined Coefficients

- No differentiating required → Useful when it is difficult to obtain successive derivatives.
- Set

$$y(x) = \sum_{k=0}^{\infty} a_k x^k$$

and substitute into the D.E. to find $\{a_k\}_{k=0}^{\infty}$.

- Usually find only several terms at the beginning.
 - → Approximate solution

Chapter 9: Series Methods

Lesson 37: Power Series Solutions of Linear Differential Equations.

Lesson 38. Series Solution of y' = f(x, y)

Lesson 39. Series Solution of a Nonlinear Differential Equation of Ord

Lesson 41. The Legendre Differential Equation. Legendre Functions.

Lesson 42. The Bessel Differential Equation. Bessel Function of the F

Chapter 9: Series Methods

Lesson 37: Power Series Solutions of Linear Differential Equations.

Lesson 38. Series Solution of y' = f(x, y)

Lesson 39. Series Solution of a Nonlinear Differential Equation of Ord

Lesson 40. Ordinary Points and Singularities of a Linear Differential

Lesson 41. The Legendre Differential Equation. Legendre Functions.

Lesson 43. The Leguerre Differential Equation. Bessel Function of the F

Chapter 9: Series Methods

Lesson 37: Power Series Solutions of Linear Differential Equations.

Lesson 38. Series Solution of y' = f(x, y)

Lesson 39. Series Solution of a Nonlinear Differential Equation of Ord

Lesson 40. Ordinary Points and Singularities of a Linear Differential E

Lesson 41. The Legendre Differential Equation. Legendre Functions.

Lesson 42. The Bessel Differential Equation. Bessel Function of the F

Ordinary and Singular Points

Can we still apply the methods in Lesson 37 when Theorem 37.51 (p.538) is not satisfied?

Example: Solve the followwing at x = 0.

$$x^2y'' + xy' + (x^2 - 1/4)y = 0$$

Definition

For the D.E.

$$y^{(n)} + F_{n-1}(x)y^{(n-1)} + \dots + F_1(x)y' + F_0(x)y = Q(x),$$

a point $x = x_0$ is called

- ▶ an *ordinary point* of the D.E. if *each* function F_0, F_1, \dots, F_{n-1} and Q is analytic at $x = x_0$ and
- ▶ a singular point of the D.E. if one of more of the functions F_0, F_1, \dots, F_{n-1} and Q is not analytic at $x = x_0$.

Regular and Irregular Singularities

For a second order L.D.E.

$$y'' + F_1(x)y' + F_2(x)y = 0,$$

where F_1 and F_2 are continuous function of x on a common interval I, a point $x = x_0$ is called

- ▶ a regular singularity of the D.E. if $(x x_0)F_1(x)$ and $(x-x_0)^2 F_2(x)$ are both analytic at $x=x_0$ and → can be solved by "method of Frobenius series."
- ▶ an irregular singularity of the D.E. either $(x x_0)F_1(x)$ or $(x-x_0)^2 F_2(x)$ is not analytic at $x=x_0$.
 - → too difficult!

Method of Frobenius Series

Frobenius series

$$y = (x - x_0)^m \sum_{j=0}^{\infty} a_j (x - x_0)^j, \quad a_0 \neq 0.$$

Note: Taylor series is a special case of a Frobenius series. (when m is a non-negative integer)

Theorem 40.32 (p.573)

If $x = x_0$ is a regular singularity of the D.E.

$$(x - x_0)^2 y'' + (x - x_0) f_x(x) y' + f_2(x) y = 0,$$

where $f_1(x) := (x - x_0)F_1(x)$ and $f_2(x) := (x - x_0)^2F_2(x)$, if each Taylor series expansion of $f_1(x)$ and $f_2(x)$ is valid in the interval $I: |x - x_0| < r$, then at least one Frobenius series solution is also valid in I except perhaps for $x = x_0$.

Method of Frobenius Series (cont'd)

1. Assume $x_0 = 0$ then the D.E. becomes

$$x^2y'' + xf_1(x)y' + f_2(x)y = 0.$$

- 2. Since $f_1(x)$ and $f_2(x)$ are analytic at x = 0, $f_1(x) = \sum_{j=0}^{\infty} b_j x^j$ and $f_2(x) = \sum_{j=0}^{\infty} c_j x^j$.
- 3. Substitute a Frobenius series $y(x) = x^m \sum_{j=0}^{\infty} a_j x^j$ and its derivatives, y'(x) and y''(x), into the D.E.
- 4. After arrangement, we get (40.37) (p.574)

$$a_0[m(m-1) + b_0m + c_0]x^m + (\cdots)x^{m+1} + \cdots + (\cdots)x^{m+n} \equiv 0.$$

- 5. Indical equation: $m(m-1) + b_0 m + c_0 = 0$.
 - Case 1: m₁ and m₂ are distinct and their difference is not an integer.
 - Caes 2: m₁ and m₂ differ by an integer N.
 - ► Case 2A: The coefficient of $a_N = 0$ and the remainder terms in the coefficients of x^{m+N} also add to zero.
 - ► Case 2B: The coefficient of $a_N = 0$ but the remainder terms in the coefficients of x^{m+N} do not add to zero.
 - Case 3: $m_1 = m_2$.

Case 1: m_1 and m_2 are distinct and their difference is not an integer

- 1. For $m_1, j = 1, 2$, find a set of $a_1, a_2, \dots, a_n, \dots$ in terms of m_1 and a_0 which results in a solution y_1 .
- 2. Do the same for m_2 and find another solution y_2 .
- 3. Due to Theorem 40.39, the general solution is $y = c_1y_1 + c_2y_2$.

Caes 2: m_1 and m_2 differ by an integer N.

- 1. Let the roots are m and m + N, N > 0.
- 2. For m + N, the indical equation becomes

$$(m+N)(m+N-1) + b_0(m+N) + c_0 = 0.$$

- 3. In (40.37), this is the same as the first term of the coefficient of x^{m+N} .
 - → Two sub-cases.

Case 2A: The coefficient of $a_N = 0$ and the remainder terms in the coefficients of x^{m+N} also add to zero.

- 1. In this case, the coefficient of x^{m+N} in (40.37) is zeo regardless of a_N .
- 2. For m, we can find two sets of coefficients a_1, a_2, \dots , thus two solutions y_1 and y_2 , one in terms of (arbitrary) a_0 and the other in terms of (arbitrary) a_N .
- 3. The solution, say y_3 , obtained by m + N in terms of a_0 is linearly dependent.
- 4. Therefore the general solution is $y = y_1 + y_2$. (Note that y_1 and y_2 each contain arbitrary constants a_0 and a_N .)

Case 2B: The coefficient of $a_N = 0$ but the remainder terms in the coefficients of x^{m+N} do not add to zero.

- 1. There is only one Frobenius series solution $y_1(x)$, obtained for m + N in terms of a_0 .
- A second independent solution has the form

$$y_2(x) = u(x) - b_N y_1(x) \log x, \quad x > 0,$$

where

$$u(x) := x^m \sum_{i=0}^{\infty} b_j x^j$$

is a Frobenius solution.

Case 3: $m_1 = m_2$.

- 1. There is only one Frobenius series solution in terms of a_0 .
- 2. A second solution can be obtained by the method of Case 2B with N=0.

Chapter 9: Series Methods

Lesson 37: Power Series Solutions of Linear Differential Equations.

Lesson 38. Series Solution of y' = f(x, y)

Lesson 39. Series Solution of a Nonlinear Differential Equation of Ord

Lesson 40. Ordinary Points and Singularities of a Linear Differential E

Lesson 41. The Legendre Differential Equation. Legendre Functions.

Lesson 43. The Laguerre Differential Equation. Laguerre Polynomials

Legendre Equation

•

$$\frac{d}{dx}\left[(1-x^2)\frac{d}{dx}y(x) \right] + k(k+1)y = (1-x^2)y'' - 2xy' + k(k+1)y = 0$$

- x = 0 is an ordinary point
 → can be solved by the method in Lesson 37B. ("successive differentiations" or "undetermined coefficients")
- $x = \pm 1$ are regular singular points.

$$f_0(x) := \frac{k(k+1)}{1-x^2}$$
 and $f_1(x) := -\frac{2x}{1-x^2}$

are both valid for |x| < 1.

- \rightarrow has a series solution of x valid for |x| < 1.
- General solution:

$$y(x) = c_1 P_k(x) + c_2 O_k(x),$$

where $P_k(x)$ is called "Legendre polynomial" and $Q_k(x)$ is called "Legendre function of the second kind." (Mathworld)

Applications of Legendre Equation

- Steady state temperature within a solid spherical ball when the temparature at points of its boundary is know.
 - → Solving Laplace's equation in spherical coodrinates. (Mathworld)
- Quantum mechanical model of the hydrogen atom

Chapter 9: Series Methods

Lesson 37: Power Series Solutions of Linear Differential Equations.

Lesson 38. Series Solution of y' = f(x, y)

Lesson 39. Series Solution of a Nonlinear Differential Equation of Ord

Lesson 40. Ordinary Points and Singularities of a Linear Differential

Lesson 41. The Legendre Differential Equation. Legendre Functions.

Lesson 42. The Bessel Differential Equation. Bessel Function of the F Lesson 43. The Laguerre Differential Equation. Laguerre Polynomials

Bessel Equation

$$x^2y'' + xy' + (x^2 - k^2)y = 0$$

- x = 0 is a regular singularity.
 - → Frobenius solution

$$y(x) = x^m \sum_{j=0}^{\infty} a_k x^k.$$

- Roots of the indical equation: ±k.
- General solution:

$$y(x) = \begin{cases} c_1 J_k(x) + c_2 J_{-k}(x) & k \neq 0, 1, 2, 3, \dots \\ c_1 J_k(x) + c_2 N_k(x) & k = 1, 2, 3, \dots \end{cases}$$

where $J_k(x)$ is called "Bessel function of the first kind of index k" and $N_k(x)$ is called "Bessel function of the second kind of index k." (See p.584 for k = 0.)

Applications of Bessel Eqauation

- Lapalce's equation in cylindrical coordinates.
- ...and more (Wikipedia)

Chapter 9: Series Methods

Lesson 37: Power Series Solutions of Linear Differential Equations.

Lesson 38. Series Solution of y' = f(x, y)

Lesson 39. Series Solution of a Nonlinear Differential Equation of Ord

Lesson 40. Ordinary Points and Singularities of a Linear Differential

Lesson 41. The Legendre Differential Equation. Legendre Functions.

Lesson 42. The Bessel Differential Equation. Bessel Function of the F

Lesson 43. The Laguerre Differential Equation. Laguerre Polynomials

Laguerre Equation

$$xy'' + (1 - x)y' + ky = 0$$
, k real

- Has non-singular solutions only if k is an integer.
- x = 0 is a regular singularity
 - → Frobenius solution

$$y(x) = x^m \sum_{j=0}^{\infty} a_k x^k.$$

- ► Roots of the indical equation: multiple 0.
 - \rightarrow only one Frobenius solution and the second solution has a logarithmic form. (40.51)
- Laguerre polynomial $L_k(x)$ is a solution. (when $k = 0, 1, 2, \cdots$.)

Applications of Laguerre Equation

- Particle in a spherically symmetric potential
 - → Radial equation of the Schrödinger equation
- Laguerre polynomials are used for Gaussian quadrature to numerically compute integrals of the form $\int_{0}^{\infty} f(x)dx$.